
Asynchronous Method Contracts for ABS

Eduard Kamburjan
Crystal Chang Din
Einar Broch Johnsen
Reiner Hähnle
May 30, 2018



Method Contracts

Main Challenges
• o!m() – Decoupled call and start of execution
• get – Decoupled call and read of the return value
• await – Intermediate suspension points

Core Ideas
• Annotate concurrency context
• Verify functional part with KeY
• Check context statically on composition



Method Contracts

Main Challenges
• o!m() – Decoupled call and start of execution
• get – Decoupled call and read of the return value
• await – Intermediate suspension points

Core Ideas
• Annotate concurrency context
• Verify functional part with KeY
• Check context statically on composition



Specification: o!m() – Preconditions



Preconditions

Main Idea: Two preconditions
• Constraint on parameters (for caller) in interface
• Constraint on state (for previous process) in class

1 interface I {
2 /*@ requires i > 0; @*/
3 Unit m(Int i);
4 class A(Rat r) implements I{
5 /*@ requires r > 0; @*/
6 Unit m(Int i){ ... }



Preconditions

Context preconditions
• Terminated methods which guarantee precondition
• Possibly run methods which preserve precondition

1 interface I {
2 /*@ requires i > 0; @*/
3 Unit m(Int i);
4 class A(Rat r) implements I{
5 /*@ requires r > 0;
6 succeeds m2;
7 overlaps m3;@*/
8 Unit m(Int i){ ... }



Preconditions

Additional propagation step between specification and proof:

Additional propagation step between specification
and proof

• Add state-constraint to postcondition of all
contracts of methods in succeeds

• Add new spec. case to all methods in overlaps with
ϕ in pre- and postcondition



Example

1 class A implements A{
2 Rat r;
3 /*@ requires i > 0; requires r > 0
4 succeeds m; overlaps up ... @*/
5 Unit test(Int i){ ... }
6 /*@ ensures sth @*/
7 Unit up(){ r++; }
8 /*@ ensures sth @*/
9 Unit m(){ r = 10; }

10 }



Example

1 class A implements A{
2 Rat r;
3 /*@ requires i > 0; requires r > 0
4 succeeds m; overlaps up ... @*/
5 Unit test(Int i){ ... }
6 /*@ requires r > 0 ensures r > 0 @*/
7 /*@ ensures sth @*/
8 Unit up(){ r++; }
9 /*@ ensures sth && r > 0 @*/

10 Unit m(){ r = 10; }
11 }



Example

Check interleavings once main block is provided
1 class A implements A{
2 /*@ succeeds m; overlaps none @*/
3 Unit test(Int i){...}
4 Unit m(){ ... }
5 Unit m2(){ ... }
6 }

Not correct

1 o!m();
2 o!test();
3 o!m2();

Not Correct

1 await o!m();
2 o!test();
3 o!m2();

Correct

1 await o!m();
2 await o!test();
3 o!m2();



Workflow

Contracts Propagation

Enriched Contracts

MHP constraints

KeY

Main Block

SACO

Classes

Modular

Concre
te



Verification of Concurrency Constraints

• overlaps is May-Happen-in-Parallel/partial order reduction
• succeeds is MHP + dependency analysis

succeeds
• MHP gives a set of methods which will have

terminated, if run before
• Dependency analysis on method starts
• More precision: Sorting with dependency analysis

Propagation degenerates to invariants!



Specification: get – Postconditions



Example

1 class A implements A{
2 Rat r; Int c;
3 /*@ ensures \result > 0 @*/
4 Unit m(Fut<Int> f){
5 Int i = f.get;
6 return i;
7 }
8 }

What knowledge do we have about i?



Accessing the Postcondition

1 class A implements A{
2 Rat r; Int c;
3 /*@ ensures \result > 0 @*/
4 Int m2(){ return 10; }
5 /*@ ensures \result > 0 @*/
6 Unit m(Fut<Int> f){
7 /*@ readsFrom m2 @*/
8 Int i = f.get;
9 return i;

10 }
11 }

• use points-to with main block to check annotations
• add condition during symbolic execution



Accessing the Postcondition

• No need to split postcondition:

ensures this.i > 0 && this.i < result

∃j.j > 0 ∧ j < result

∃j.this.i > 0 ∧ this.i < j



Workflow

Contracts Propagation

Enriched Contracts

MHP / p2
constraints

KeY

Main Block

SACO

Classes

Modular

Concre
te



Specification: await – Suspension



Example

1 class A implements A{
2 Rat r; Int c;
3 /*@ ensures r > c @*/
4 Unit m(){
5 r = c - 1;
6 await True;
7 r = c + 2;
8 }
9 }

Is a postcondition a condition for all suspension points?



Suspension Points

• In FormbaR we require more in some methods:
At the await we hold a lock, but not at the return

• Postcondition describes termination
• Suspension points get extra conditions

1 /*@ assume r < 0;
2 ensures r < 0;
3 overlaps m3
4 succeeds m2
5 @*/
6 await c < 0;



Suspension Points

• Method names not fine-grained enough
• More control over interleavings needed

1 Unit m(Fut<Unit> f, Fut<Unit> f2){
2 s1;
3 await f?;
4 s2;
5 await f2?;
6 s3;
7 }
8 ...
9 ...



Suspension Points

• Mark beginning of CFG block
• Method name refers to last block

1 Unit m(Fut<Unit> f, Fut<Unit> f2){
2 s1;
3 [atom: "bl1"] await f?;
4 s2;
5 await f2?;
6 s3;
7 }
8 ...
9 /*@succeeds bl1;@*/ await c < 0;

• Method contracts are special suspension contracts



Segment Structure



Verification: Deduction and Composition



Encapsulation

How to connect Contract and Analyses?
• Characterize contract in meta-trace logic
• Characterize analysis in meta-trace logic
• Connection Lemma: Success of analysis implies contract

• Deduction is special analysis



Encapsulation

Logical Characterization of Resolving Contract resolve(resolvek, tr)

∀i ∈ N. evtr[i] .
= futREv(X, f, e, k) →

∃j ∈ N.
∨

m∈resolvek

evtr[j] .
= futEv(X′, f, m, e)

Logical Characterization of Points-To Analysis points(k, tr)

∀i ∈ N. evtr[i] .
= futREv(X, f, e, k) →

∃j ∈ N.
∨

m∈p2(k)
evtr[j] .

= futEv(X′, f, m, e)

Connecting Lemma

∀tr. p2(k) ⊆ resolvek → (points(k, tr) → resolve(resolvek, tr))



Encapsulation

Logical Characterization of Resolving Contract resolve(resolvek, tr)

∀i ∈ N. evtr[i] .
= futREv(X, f, e, k) →

∃j ∈ N.
∨

m∈resolvek

evtr[j] .
= futEv(X′, f, m, e)

Logical Characterization of Points-To Analysis points(k, tr)

∀i ∈ N. evtr[i] .
= futREv(X, f, e, k) →

∃j ∈ N.
∨

m∈p2(k)
evtr[j] .

= futEv(X′, f, m, e)

Connecting Lemma

∀tr. p2(k) ⊆ resolvek → (points(k, tr) → resolve(resolvek, tr))



Encapsulation

Logical Characterization of Resolving Contract resolve(resolvek, tr)

∀i ∈ N. evtr[i] .
= futREv(X, f, e, k) →

∃j ∈ N.
∨

m∈resolvek

evtr[j] .
= futEv(X′, f, m, e)

Logical Characterization of Points-To Analysis points(k, tr)

∀i ∈ N. evtr[i] .
= futREv(X, f, e, k) →

∃j ∈ N.
∨

m∈p2(k)
evtr[j] .

= futEv(X′, f, m, e)

Connecting Lemma

∀tr. p2(k) ⊆ resolvek → (points(k, tr) → resolve(resolvek, tr))



Rules

(get)
fresh(r,T), (∨m∈resolve(k) χ̂m(r)) =⇒ {v:=r}{T := T · futREv(this,f,r, k)}[s]χ

=⇒ [[sync: "k"] v = f.get;s]χ

(aw)

=⇒ {T := T · suspEv(this,F,M, i)}χi
fresh(t,T) =⇒ UA{T := T · suspEv(this,F,M, i) · t · reacEv(this,F,M, i)}(ϕi → [s]χ)

=⇒ [[atom: "i"] await f?;s]χ



Soundness

Coherence
A set of method contract is coherent after propagation

Prgm-Soundness
Let Prgm be a program. A rule with premises P1 . . .Pn and
conclusion C is Prgm-sound if for every β and every partial trace tr
of Prgm the following holds:

(∧
i≤n[[Pi]]tr,β

)
→ [[C]]tr,β.

Rules depend on the program!

(get)
fresh(r,T), (∨m∈resolve(i) χ̂m(r)) =⇒ {v:=r}{T := T · futREv(this,f,r, i)}[s]χ

=⇒ [[sync: "i"] v = f.get;s]χ



Soundness

Coherence
A set of method contract is coherent after propagation

Prgm-Soundness
Let Prgm be a program. A rule with premises P1 . . .Pn and
conclusion C is Prgm-sound if for every β and every partial trace tr
of Prgm the following holds:

(∧
i≤n[[Pi]]tr,β

)
→ [[C]]tr,β.

Rules depend on the program!

(get)
fresh(r,T), (∨m∈resolve(i) χ̂m(r)) =⇒ {v:=r}{T := T · futREv(this,f,r, i)}[s]χ

=⇒ [[sync: "i"] v = f.get;s]χ



Prgm-Soundness of (get)

• One rule per synchronization point!
• Soundness of (get) is not compositional

• Requires success of Points-To Analysis
• Requires that all other method obligations are proven
• Requires that all other (get)-rules are sound

• Proof that for every trace, every future read satisfies
Prgm-soundness

• Proof per induction on the number of future read in trace



Prgm-Soundness of (get)

Induction Base: First synchronization

• Corresponding (get)-application is sound
• Requires that previous methods are proven, but these contain

no future reads

Induction Step: n + 1th synchronization

• Corresponding (get)-application is sound
• Requires that previous methods are proven, but by IH all

(get)-application there were sound

Similar for (aw), obviously does not work for recursion



Prgm-Soundness of (get)

Induction Base: First synchronization

• Corresponding (get)-application is sound
• Requires that previous methods are proven, but these contain

no future reads

Induction Step: n + 1th synchronization

• Corresponding (get)-application is sound
• Requires that previous methods are proven, but by IH all

(get)-application there were sound

Similar for (aw), obviously does not work for recursion



Prgm-Soundness of (get)

Induction Base: First synchronization

• Corresponding (get)-application is sound
• Requires that previous methods are proven, but these contain

no future reads

Induction Step: n + 1th synchronization

• Corresponding (get)-application is sound
• Requires that previous methods are proven, but by IH all

(get)-application there were sound

Similar for (aw), obviously does not work for recursion



Global Soundness

Soundness of Compositional Reasoning
Let M be a coherent set of method contracts. If

1. the PT, MHP and MHF analyses succeed on M
2. for each Mm ∈ M the proof obligation can be shown, then the

following holds for all tr with Prgm ⇓ tr:∧
Mm∈M

(
assert(Mm, tr)∧assume(Mm, tr)∧context(Mm, tr)∧resolve(Mm, tr)

)



Conclusion



Contracts

Asynchronous method contracts
• Two preconditions
• One postcondition for termination
• One suspension contract per suspension point
• A set of methods guaranteeing the precondition
• A set of methods preserving the precondition

• Hides complexity in calculus: concurrency pushed out of KeY
• Complexity visible in specification (compared to JML)



Better Rules (soon™)

(get)
fresh(r), (∨m∈resolve(i) χ̂m(r)) =⇒ {v:=r}[s]χ

=⇒ [[sync: "i"] v = f.get;s]χ

(aw)

=⇒ χi
=⇒ UA(ϕi → [s]χ)

=⇒ [[atom: "i"] await f?;s]χ



Limits

Encapsulation of memory enforces encapsulation of specifications

• Cannot express global properties like protocols
• “The data I receive is a valid key for some internal map”



Future Work

• Implementation
• Method Contracts generated from Session Types
• Better Calculus
• Trace Logic/New Semantics
• Recursion



Summary

• Two preconditions:
heap – parameters

• succeeds

• overlaps

• One postcondition:
at termination

• Suspension contracts

Contracts Propagation

Enriched Contracts

MHP / p2
constraints

KeY

Main Block

SACO

Classes

Modular

Concre
te

Thank you for your attention!


	Specification: o!m() – Preconditions
	Specification: get – Postconditions
	Specification: await – Suspension
	Verification: Deduction and Composition
	Conclusion

