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Once Upon a Time in Darmstadt

One fine evening . . .
we decided to develop a
new sequent calculus for
a program logic for ABS
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Semantics

Would be Good to Have a Formal Semantics . . .
. . . to guide the design of the calculus’ rules

. . . to prove soundness and, eventually, completeness

Wanted: Trace Semantics for a Concurrent, Distributed Language
Given a program statement s and an initial state σ, the semantics of s is the set of
all possible execution traces τ that are possible when s is started in σ
I Trace: a possibly empty, possibly infinite, sequence of execution states
I Global semantics: state holds set of processors, each with own heap
I Concurrent behavior dependent on scheduler: set of traces
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SOS: Structural Operational Semantics
Standard Approach in Programming Language Semantics

Reduction rules pattern match on runtime configurations ∼ states

o[b, C,σ] || n〈b, o,σ, s〉 || b[l ] || · · ·

object

class state

task

PC

lock

proc.>/⊥

Typical Reduction Rule: object creation:

n〈b, o,σ, T z = new C(v);s〉
b′(>) || n′〈b′, o′,σ′init , stask〉 || o′[b′, C,σinit ] || n〈b, o,σ, s{z/o′}〉

where b′, o′, n′ new; T f ; s′ init block of C;σinit = T f ; stask = s′{this/o′; suspend}
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A Clash

What we Have
Programming Language: Structural operational semantics (SOS)

What we Need
Sequent Calculus: Model theoretic, denotational semantics
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What’s Wrong with SOS?

SOS Rules Define Interpreter of Target Language
I Many rules, often 3–5 for each statement (> 60 for ABS)
I Not modular:

I No separation between local and global computation
I Next applicable rule depends on current configuration
I Small rule modifications have unforeseeable consequences

Program Logics Based on (forward / backward) Symbolic Execution
I Ill-matched to SOS
I Better: denotational semantics with model theoretic flavor
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Ok, We Need a Denotational Semantics
—So What?

There is none! A least not for a complex, concurrent programming language

KeY, Why, Dafny, but even Dijkstra, Hoare Calculus only
C, C++, Java, ABS SOS only

Concurrent separation logic Stephen Brookes’ action traces

Starting Point
Model theoretic semantics for while language in:

Richard Bubel, Crystal Chang Din, Reiner Hähnle, Keiko Nakata.
A Dynamic Logic with Traces and Coinduction. TABLEAUX 2015: 307-322
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ABS Communication Structure

Guest this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fc = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fc?

suspension

get fc
termination

await fm?

get fm
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A Denotational Semantics for ABS

Given an ABS statement, compute all possible finite or infinite traces
. . . in the following manner:

Local — for given initial state, current object this, heap, future destiny

Modular — evaluation of one statement does not depend on others’

Composable — obtain global behavior by composition of object-local behavior

v = f .get; if (v == 0) then o.m() else await f ′?

I Behavior depends on whether f , f ′ resolved (starvation, blocking!)
I Conditional depends on value v from previous asynchronous call
I Execution of m requires value of o
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Despair? Sit Down and Cry?
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No!
Boldly Go where no Semantics has Gone Before

v = f .get; if (v == 0) then o.m() else await f ′?

Abstract away from Unknowables during Semantic Evaluation
I Don’t know which branch is taken —

Generate all—cumulative semantics—with appropriate path condition
I Don’t know values of parameters, attributes, initial state —

Use symbolic values: inspired by symbolic execution
I Don’t know identity of this, destiny —

Render semantic evaluation parametric in current object, future
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Symbolic, Conditioned Traces

Definition (Semantic Evaluation)
For each object O, future F , ABS statement s, symbolic state σ

valO,F
σ (s)

is a semantic evaluation function yielding a set of symbolic traces starting in σ.

Definition (Path Condition, Symbolic Trace)
A path condition pc is a set of quantifier-free formulas over Exp(L),
where L are memory locations (variables) and Exp(L) ABS expressions over L.

A (conditioned) symbolic trace has the form pc . τ ,
where τ is a finite or infinite sequence of symbolic states.

Definition (Symbolic State)
A symbolic state is a function σ : L → Exp(L).
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Symbolic Traces
Conventions, Notation, Example

I Assume σ(`) ∈ Exp(L) is always fully evaluated
⇒ if σ(`) contains no symbol from L then σ(`) ∈ D

I Likewise, symbol-free path condition is either “true” or “false”
I Identify true . τ with τ
I Extend trace with single successor state: τ y σ

I Lifting states to singleton traces: 〈σ〉
I Denote σ(`) = e with ` 7→ e

{(vy 6= 0)} . 〈[O.i 7→ v0, y 7→ vy , l 7→ v1]〉y [O.i 7→ 42, y 7→ v0 + vy , l 7→ v1]

I Empty trace denoted ε
I Concatenation of traces τ · ω (only defined if τ finite)
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And Now . . . Let’s Go!
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Local Semantics of ABS
Block Scopes

Scopes
ABS has block statements that define variable scopes: {s}, where s a statement

Evaluation of block scopes without local variable declarations

valO,F
σ ({s}) =

valO,F
σ (s)

Wlog, local variable declarations appear only at the beginning of block scopes

valO,F
σ ({T ` = e; bs}) =

{pc . 〈σ〉 · ω | σ′ = σ[`′ 7→ valO,F
σ (e)],

pc . ω ∈ valO,F
σ′ ({bs[`′/`]}), isFresh(`′)
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Local Semantics of ABS
Skip and Local Variable Assignment

valO,F
σ (skip) = {∅ . 〈σ〉}

valO,F
σ (` = e) = {∅ . 〈σ〉y σ[` 7→ valO,F

σ (e)]}

Lätt som en plätt!
Von Kr-val—Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3473865
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Recall the ABS Communication Structure

Guest this

begin execution of eat

order(d) on w

Fut<Meal> fm = w!order(d)

begin execution of order(d)
Fut<Meal> fc = c!prepare(d)

delay

prepare(d) on c

begin execution of prepare(d)
terminationawait fc?

suspension

get fc
termination

await fm?

get fm
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Incorporate Communication Events into Traces

Lifting Event Markers to Traces
Let ev(v ) be an event marker with arguments v
How to associate ev(v ) with a state σ inside a trace τ?

evσ(v ) = 〈σ〉y ev(v ) y σ

I Event trace evσ(v ) is a trace of length 3
I Advantage: Traces begin and end always with states

Event markers will be used to ensure well-formedness of traces:
objects must be created before they can be accessed, etc.

28 May 2018 | TU Darmstadt, Software Engineering | Reiner Hähnle | 18



Incorporate Communication Events into Traces

Lifting Event Markers to Traces
Let ev(v ) be an event marker with arguments v
How to associate ev(v ) with a state σ inside a trace τ?

evσ(v ) = 〈σ〉y ev(v ) y σ

I Event trace evσ(v ) is a trace of length 3
I Advantage: Traces begin and end always with states

Event markers will be used to ensure well-formedness of traces:
objects must be created before they can be accessed, etc.

28 May 2018 | TU Darmstadt, Software Engineering | Reiner Hähnle | 18



Local Semantics of ABS
Object Creation

class C(T a) implements I { ... }
` = new C(e); // create new object of class C

// with class attribute arguments e and assign to `

Object Initialization

I Wlog no initialization block
I For fresh object o the initial state C.ε(o, v ):

sets each attribute to fresh symbol, class attributes to constructor values v
I Event marker newEvσ(this, newObject, attributeValues)

valO,F
σ (` = new C (e)) =

{pc . newEvσ(O, o, v ) · τ |
isFresh(o), class(o) = C, σ′ = C.ε(o, v ) ◦ σ,
pc . τ ∈ valO, F

σ′ (` = o), v = valO,F
σ (e)
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Local Semantics of ABS
Asynchronous Method Call

` = e′!m(e); // asynchronous call of m on e′ with arguments e
// assign result to `

Event Marker
Invocation event invEvσ(caller , callee, future, method , args)

valO,F
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{pc . invEvσ(O, valO,F
σ (e′), f , m, valO,F

σ (e)) ∗∗ τ |
isFresh(f ), method(f ) = m, pc . τ ∈ valO,F

σ (` = f )

What is “∗∗” ?
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The “Chop” Constructor for Traces

Semantics of the Sequencing Statement in Terms of Traces

r ; s

I τ ∗∗ τ ′ is “chop” on traces: cut out one redundant state
I If τ is infinite, returns τ , otherwise defined as above
I Event lifting evσ(v ) = 〈σ〉y ev(v ) y σ: events are “choppable”
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Local Semantics of ABS
Method Execution

Event Marker
Invocation reaction event invREvσ(caller , callee, future, method , args)

valO,F
σ (C.m) =

{pc . invREvσ(O′, O, F , m, v0) ∗∗ ω |
pc . ω ∈ valO,F

σ ({T `′ = v0; s}), isFresh(O′, v0)

lookup(m, C) = T m(T `′){s},
I Unknown parameter values initialized with fresh symbolic constants v0
I Call parameters inside scope: no name clash
I Unknown caller initialized with fresh parameter O′

Conditional, method return, synchronous calls: straightforward
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Suspension and Resumption

Problems with Release of Control and Interleaving
1. Impossible to know the computation state after resumption

2. When composing behavior, we need to know interleaving points

Make use of release events and continuations

valO,F
σ (suspend) =

{∅ . relEvσ(O) · starve(O)} ∪
{∅ . relEvσ(O) · relCont(O, F , skip)}

I relCont is not state/event, but continuation marker to store future behavior
I Process might never be re-scheduled: causes different global behavior

starvation marker (only at end of a trace) signifies this
I Continuation and starvation markers are not part of trace
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Semantics of Sequential Composition —
Continuation Passing Style

In a local semantics, sequential composition becomes tricky

I Execution of r might diverge or starve
I r may contain release points

valO,F
σ (r ; s) =

{(pcr . τr ) ∗∗ (pcs . ωs) | pcr . τr ∈ valO,F
σ (r ), pcs . ωs ∈ valO,F

σ′ (s),
where σ′ = last(τr ) if τr is finite

, arbitrary otherwise

}

∪

{pcr . τr · relCont(O, F , r ′; s) | pcr . τr · relCont(O, F , r ′) ∈ valO,F
σ (r )}

I Non-termination, starving handled in definition of ∗∗: throw away ωs

I τr must end with continuation marker: compose with s
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Semantic Evaluation of Sequential Composition
Example

valO,F
σ (suspend; s) ?=

{∅ . relEvσ(O) · starve(O)} ∪
{∅ . relEvσ(O) · relCont(O, F , skip; s)}

valO,F
σ (suspend) = {∅ . relEvσ(O) · starve(O)} ∪

{∅ . relEvσ(O) · relCont(O, F , skip)}
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Computation of Local Traces
Example

Int n() {
Int y = 10;
Fut<Int> l = 0;
l = this!m();
if (y == 0) then y = this.m() else await l? fi;
y = this.i + y;
return y;

}

valO, F
C.ε(O)(C.n) = {

}

I Future f0 in l already resolved at await: n runs to completion
I n starves at awaitI Release control at await: put remaining code in continuation
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From Local to Global Traces

Goal
Given a main block {T ` = v ; s} and ABS program P
produce all valid, concrete system traces

1. Compute local traces of main block: M = valMain, f0
ε ({T ` = v ; s})

Result: initial concrete, non-empty traces with path condition true or false

2. Compute local traces of each method for all objects and futures:

G = {valO, F
C.ε(O)(C.m) | class(O) = C, m ∈ mtd(C), O ∈ O, F ∈ F , C ∈ P}

3. Pick an initial concrete trace with path condition true fromM and extend it
with suitable instances from G, repeat
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Producing Global System Traces

Definition (Global Trace Composition Rule)
Let sh be a finite concrete trace and q a pool (queue) of sets of symbolic traces.
A global trace composition rule has the form

Conditions on sh, q
sh, q → sh′, q′

I Any exhaustive application of global trace composition rules yields one valid,
global system trace, possibly infinite

I Initial configuration is: ε, {M} ∪ G
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External Interleaving

How to Preempt Local Execution?
ABS has no preemption . . .
Interleave execution on different processors with interleaving events

Execute arbitrary finite local trace, then interleave other process

Ω ∈ q object(Ω) = O pc . τ · ω ∈ Ω get symbolic trace on an O from pool q

last(sh) = σ get final concrete state σ from sh
τ 6= ε make some finite progress
ω 6∈ {ε, relCont(O, _, _), starve(O)} don’t finish execution on O
pcσ = true wf (sh ∗∗ τσ) σ-instance of pc . τ feasible, well-formed
q′ = q \ Ω ∪ {∅ . ilREvlast(τ )(O) · ω} update pool, insert interleaving events

sh, q → sh

∗∗ τσ ∗∗ ilEvlast(τσ )(O)

, q′
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Other Global Trace Composition Rules

1. External interleaving

2. Release

3. Continuation

4. Starvation

5. Blocking
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Well-Formed Traces

Well-Formedness
Each global rule maintains well-formedness of trace extension: wf (sh ∗∗ τσ)
I Needs to be checked only on finite, concrete traces
I Ensures that system event sequence is schedulable
I Predicate defined on event structure of given trace

Examples of Well-Formedness Conditions
I “A release event for a future f cannot be preceded by a completion event for f ”
I “An external interleaving event on O must be directly followed by its

corresponding interleaving reaction event”
I This prevents local preemption
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A Modular, Denotational Trace Semantics

I Each statement is evaluated locally for any object, future
I Evaluation of statement yields set of symbolic traces
I Evaluation is independent from other statements

I Internal interleaving realized with continuations
I Distinguish divergence, starvation, and blocking

I Global behavior by instantiation and external interleaving
I Can characterize concurrency models via well-formedness by way of dual events
I Separation of concerns: computation states, event structure

One evaluation rule per statement, five global rules
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A Modular, Denotational Trace Semantics

I Each statement is evaluated locally for any object, future
I Evaluation of statement yields set of symbolic traces
I Evaluation is independent from other statements

I Internal interleaving realized with continuations
I Distinguish divergence, starvation, and blocking

I Global behavior by instantiation and external interleaving
I Can characterize concurrency models via well-formedness by way of dual events
I Separation of concerns: computation states, event structure

One evaluation rule per statement, five global rules

Cheers!
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Trace Formulas

Symbolic Trace Formula
An (abstract) symbolic trace formula evaluates to a possibly infinite set of traces
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Trace Formulas

Symbolic Trace Formula
An (abstract) symbolic trace formula evaluates to a possibly infinite set of traces

“Each time a router terminates the getPk method, it must either have invoked a
method to redirect a packet or have stored that packet in its receivedPks set”

invREv(_,this,fr,getPk,(pk,_)) futEv(this,fr,getPk,_)

1) invEv(this,this,_,redirectPk,(pk,_))
2) pk in receivedPks

Corresponding symbolic trace formula:

ω fr,pk(
invREv(_,this,fr,getPk,(pk,_))� invEv(this,this,_,redirectPk,(pk,_))� futEv(this,fr,getPk,_)

∨
invREv(_,this,fr,getPk,(pk,_))� dpk∈ receivedPkse � futEv(this,fr,getPk,_)

)
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ABS Program Logic

Definition (Trace Modality Formula)
1. Trace modality formulas syntactically closed under usual propositional and

first-order operators.

2. If s is an ABS statement and Ψ a trace modality formula, then [[s]]Ψ is a trace
modality formula.

3. If {u} is an update and Ψ a trace modality formula, then {u}Ψ is a trace
modality formula.

Updates {` := exp} or {ev (e)} record state changes effected by assignments
or the occurrence of communication events.
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Semantics of Trace Modality Formulas

Definition (Evaluation of Trace Modality Formula)
Trace modality valτ ([[s]]Ψ) is true if for any O, F :

If for each τ ′ ∈ valO, F
last(τ )(s) such that τ ∗∗ τ ′ is well-formed valO, F

τ∗∗τ ′ (Ψ) holds.

“Any trace of s that extends τ is contained in Ψ”

With a semantics for trace modality formulas, we can start to design a calculus . . .
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Asynchronous Method Call
Semantics vs. Calculus

Semantic Evaluation of Asynchronous Method Call

valO,F
σ (` = e′!m(e)) = {pc . invEvσ(O, valO,F

σ (e′), f , m, valO,F
σ (e)) ∗∗ τ |

isFresh(f ), method(f ) = m, pc . τ ∈ valO,F
σ (` = f )}

Sequent Rule for Asynchronous Method Call

Γ, isFresh(f )⇒ U{invEv(this, e′, f , m, e)}{` := f}[[r ]]Ψ

Γ⇒ U [[` = e′!m(e); r ]]Ψ

One-to-one correspondence between semantics and deduction rule!
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Future Work

Calculus
We have a sequent calculus for local invariant reasoning
I Turn into calculus for global reasoning (Richard)
I Generalize invariant into contract-based reasoning (Eduard)
I Formally prove soundness, possibly completeness
I Implement as part of the ABS variant of KeY

Semantics
Apply semantic framework to other concurrent languages
I Related active object languages, e.g., MSR’s Orleans
I C-like concurrent languages with preemption

28 May 2018 | TU Darmstadt, Software Engineering | Reiner Hähnle | 37



Future Work

Calculus
We have a sequent calculus for local invariant reasoning
I Turn into calculus for global reasoning (Richard)
I Generalize invariant into contract-based reasoning (Eduard)
I Formally prove soundness, possibly completeness
I Implement as part of the ABS variant of KeY

Semantics
Apply semantic framework to other concurrent languages
I Related active object languages, e.g., MSR’s Orleans
I C-like concurrent languages with preemption

28 May 2018 | TU Darmstadt, Software Engineering | Reiner Hähnle | 37



Did You Notice the Oulipian Constraint?

G. Perec
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