
Session Types for ABS
Technical Report: TUD-CS-2016-0179
Last Revision: 29.07.2016
Eduard Kamburjan

Software Engineering Group
Department of Computer Science



Contents

1. Introduction 3

2. ABS 7
2.1. Syntax and Semantics of ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. ABSDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3. Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Session Types 26
3.1. Global Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2. Local Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3. Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1. Projecting Global to Object-Local Types . . . . . . . . . . . . . . . . . 36
3.3.2. Projecting Object-Local to Method-Local Types . . . . . . . . . . . . . 38

3.4. Translation of Types to Regular Expressions . . . . . . . . . . . . . . . . . . . . 41
3.4.1. Translation of Global Types to Regular Expressions . . . . . . . . . . . 41
3.4.2. Translation of Local Types into Regular Expressions . . . . . . . . . . . 42

3.5. Well-Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Verification 46
4.1. Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2. Translation of Method-Local Types into ABSDL . . . . . . . . . . . . . . . . . 50
4.3. Scheduling with Session Automata . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Conclusion 61

A. Appendix 63
A.1. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 73

2



1. Introduction

Motivation

The abstract behavioral specification (ABS) language is an object-oriented language, designed
to model distributed systems. The concurrency model of ABS is based on invariants and
compositional reasoning; reasoning about a concurrent system is possible by invariants of
objects: Objects must ensure that their invariant holds at every moment the processor switches
the active process. The activated process then can rely on this guarantee.

Another aspect of the concurrency model of ABS is cooperative scheduling : An object can
only switch the active process if the currently active process explicitly releases control or
terminates. Thus processes running in the same object can not be interleaved arbitrarily, but
only as programmed by the developer.

Such invariants for ABS can be verified with the automatic theorem prover KeY-ABS, which
encodes symbolic execution in a dynamic logic. Invariants are specified directly in this logic
and verified to hold at the release points of all methods in a class. There is no automatic
reasoning about the specification from a global point of view. Especially it is not possible to
specify the global communication pattern of a system. The communication pattern of a system
run is the sequence of executed communication events, such as sending and receiving.

Multi-party session types for asynchronous systems [18] are an established type discipline
to specify and verify distributed systems. Session types allow to specify globally, but to verify
locally. I.e. a global specification can be verified with only the code of single endpoints involved
in the communication. Former work was mainly concerned with session types for concurrency
models based on channels.

In this work we adapt the session type approach to ABS. We design a session type specifica-
tion language for the concurrency model of ABS, which is not based on channels and in which
executions of endpoints can not be interleaved arbitrarily.

Introduction

We provide a specification language which is

1. verifiable in the KeY-ABS theorem prover and

2. limits reasoning about side effects and the heap memory to a minimum.

KeY-ABS has uniform classes, all methods are available at any time. We do not specify or
verify typestate [28] by introducing additional fields to keep track of the current point in the
protocol. We present two approaches:

• A static check whether it suffices to demand that all processes follow their local specifi-
cation to show that they are composed correctly In this case we give no guarantee how
the system continues if one process does not follow its specification.
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1. Introduction

• Additionally to the derivation of specifications for processes, we derive a specification
on object-scheduler. If the object schedules processes according to this specification, the
order is guaranteed.

The concurrency model of ABS differs from the concurrency model of π-calculus based
systems by using futures instead of channels and by grouping processes by the object which
are executing them. Thus the session types for ABS need additional concepts for the following
three points:

1. Correct usage of futures: ABS demands that every communication between two
objects is realized by an asynchronous method call. Each such method call uses a new
future as a place holder on the caller side and starts a new process on the callee side.
The future transports additional data strictly in the following order:

• The caller writes the method parameters

• The callee reads the method parameters

• The callee writes the return value (resolving the future)

• Anyone may read the return value (fetching the future)

In contrast to channels it is not possible to send arbitrary data at arbitrary points of
time from any endpoint who has access to the future. Also the callee process does not
have explicit access to the future it computes.

We use more session type actions than channel-based session types, because there are more
operations which can be performed: additionally to sending and receiving a method call,
we model the resolving and fetching of a future to ensure that the session type describes a
communication that is permissible in the concurrency model with futures.

2. Communication of choice: In classical session types, if an endpoint chooses a branch
of execution it sends a branch-label over a channel to any endpoint that must be notified
about the choice. This is not practical in the ABS model, in which every sending either
creates a new process (if communicated via a method call) or prevents the choosing
process from sending another value (if communicated via the return value).

We distinguish between forward choices, which are communicated from the caller to the
callee, and backward choices, which are communicated from the callee to the caller. We use
different mechanisms to handle these.

• In forward choices, the choice is communicated via the method-name, i.e. every branch
is identified by the method-name instead of a branch-label. The callee can resume its
execution depending on which method has been called. As we exclude reasoning about
the heap, already active processes in the callee object are not notified about the choice
and can not make their continuation depend on the choice. The reason is that processes
in the same object can only communicate via the heap.

• In backward choices, the choice is communicated via a constructor of an algebraic data
type, i.e. the return type is an algebraic data type and the branch is identified by the
outermost constructor. Only the caller process is notified about the change, other active
processes in the same object must continue it the same way in every branch. The return
value must not be an algebraic data type for methods that are not communicating a
backward choice.
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3. Cooperative Scheduling Processes in ABS are grouped by the executing object and
can not be interleaved arbitrarily. Instead, a process is executed until it explicitly releases
control by suspending or terminating itself.

We use an additional session type action, which is not needed in models for channel-based
session types, to model release of control in the session type. This action ensures that the
processes can be interleaved as specified.

Scheduling in ABS provides no guarantees like fairness. It also does not specify which process
will be reactivated if several processes can be reactivated. Our specification language does not
rely on a specific scheduling algorithm: at each point the scheduler must decide what process
to start, it is guaranteed that there is only one possible process.

To ensure that our specification can be verified with KeY-ABS without dynamic checks at
runtime, we impose the following assumptions and restrictions:

• Our session types are not able to specify the usage of fields with future types. Reading
them results in a communication history which is not captured by any session type.

• The guard of an await statement can only be a future. This enables us to derive when
a process is reactivated. Processes may reactivate after a side-effect of another process
in the same object, if arbitrary guards are allowed.

Example 1
Consider a server which has an initializing process, which suspends itself after initializing
the fields and is reactivated once 2 accesses have been served. The processes computing
these accesses can communicate this by increasing a counter field.

To verify such a specification, it must be verified that the access-processes indeed increases
the counter. We are concerned with communication patterns and do not allow such
specifications. This way we are able to reduce reasoning about the heap memory.

• All objects are already created and all endpoints who communicate in the session have
pointers to each other. Creation of new objects and their propagation would complicate
the specification without any further insights, as we already deal with propagation for
futures. This assumption simplifies the presentation.

• Every method has at most one session type. In general, methods may realize different
communication patterns, depending on the inner state of their object. This could be
reflected by different communication at different positions in the type. To enable this,
one must verify that the right communication pattern is realized at a given precondition.
This would again require reasoning about side-effects (the state must be changed correctly
before the second call) and the heap memory.

• Each cog has at most one object. This is a current restriction of the KeY-ABS prover.

• Each repetition is iterated only finitely often. As the KeY-ABS prover currently only
allows reasoning about partial correctness, we are only able to verify finite behavior.
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1. Introduction

Notation

Sets and Sequences We denote the powerset of a set A with P(A) = {A′ | A′ ⊆ A} and
the set of finite sequences of elements of A with A∗. We write [a, b, c, . . . ] for the sequence
containing a, b, c, . . . in this order. Given a sequence S ∈ A∗, i ∈ N, a ∈ A, we write |S| for
the length of S, S[i] for the ith element in s and S \ a for the sequence that is obtained by
the usual removing operation of every occurrence of a in S and last(S) for the last element of
S. Given two sequences S, S′ we write π(S, S′) if S is a permutation of S′ and S ◦ S′ for the
concatenation of S and S′. The empty sequence is denoted ε. We denote that S is a prefix of
S′ by S v S′.

Functions Given two sets A,B, we write A → B for the set of all total functions from A
to B and A ⇀ B for the set of all partial functions from A to B. We write ⊥ for undefined
and f(x) = ⊥ if f is undefined for x. We denote the domain of a partial function with
dom(f) = {x ∈ A | f(x) 6= ⊥} and its image with im(f) = {x ∈ B | ∃a ∈ A. f(a) = x}.
Given a function f : A→ B and two elements a ∈ A, b ∈ B we write f [a 7→ b] for the updated
function which is defined by

f [a 7→ b](x) =

{
b if x = a
f(x) otherwise
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2. ABS

ABS [21] is designed to model concurrent systems in a way that simplifies reasoning about
their behavior. Communication between two objects is only possible by asynchronous method
calls and reading the return value. There are no public fields. An asynchronous method call is
realized by establishing the connection via a unique future. This future is a place holder for the
caller, who can wait until the called method terminates and then read from the future. If the
caller attempts to read while the called method is not yet terminated, the process blocks. If
the process releases control and waits for the termination of the callee, the object can execute
another process. This is the only way to switch the active process, an object can not interleave
its processes arbitrarily.

An ABS system consists of multiple objects, each with a set of executable methods. Each
object has an active process and may have several suspended processes. If a method of the
object is called while a process is already active, the execution of the new process for this
method call is also suspended. A suspended process which is waiting for a future can only
continue once the future it is waiting for is resolved, i.e. the method call it is handling is
terminated.

In this chapter we describe a subset of ABS. As we are only concerned with communication
and not computation, we have a more simple model of expressions. Besides that, we only allow
suspension on futures.

2.1. Syntax and Semantics of ABS

Definition 1 (Data Type System)
An ABS-data-type system is a triple (A,C, I), where

• I is the partially ordered set of all interface names, where i � i′ denotes that i extends i′.

• C is the set of all class names, where c � i denotes that class c implements interface i.

• A is the set of all algebraic data types. Each algebraic data type a is represented as
a tuple (id , constr , ar , type) where id is the name, constr the set of constructor names,
ar : constr → N maps constructors to their arity and type : constr → (I ∪ A)∗ maps
constructors to their types. We refer to an algebraic data type by its unique name.

We assume that all data types have unique names, type respects the arity of its argument
and all sets of constructors are disjoint. Given an algebraic data type a = (id , constr , ar , type),
we denote its set of constructor names with constr(a). If a data type system (A,C, I) is fixed,
we write Con for

⋃
a∈A constr(a), the set of all constructor names.

We demand that there are pre-defined algebraic data types bool with two 0-arity construc-
tors true and false, Int with one 0-arity constructor for each number n ∈ N, and Exception
with one 0-arity constructor PatternFailure. The Exception data type may have more
user-defined constructors.
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2. ABS

We follow mostly the subset presented in [16] and only give the definition of syntax for
methods, assuming the data type system is given when the session type is specified. We
denote the set of all fields with Fl and the set of all variables with V .

Definition 2 (Syntax of ABS Statements)
Let C range over all constructors in a given ABS-data-type system, x over local variables and
fields, fl over fields, f over futures Fut, m over methods Met and T over interface names and
algebraic data type names.

The notation~· denotes a sequence of elements, of fitting arity.
Expressions e are defined by the grammar

e ::= e&e |!e | C(~e) | x | e+ e | e ∗ e | −e

Branches b and statements s are defined by the grammar

b ::=C(~e) => s | default => (s | ε)
s ::=s; s | await f | x = e | Tv = C(~e) | Fut〈T 〉f = fl !m(~e) | return e |

if(e)then{s}else{s} | while(e){s} | throw e | try{s}catch(e)
[
b
]+ | case(e)

[
b
]+

The statement Fut〈T 〉f = fl !m(~e) executes an asynchronous method call on the method m
on the object stored in fl. The return type of m must be T and f is the future used to handle
this call. We refrain from giving a formal type system, but assume one similar to [21], where
matching is also described in detail.

The case statement is a pattern matching statement, which matches the expression e against
the guard c(~e) of all branches. If e can be matched against a guard, the branch is executed.
If there is no matching branch, but a default branch is provided, then the default branch is
executed. If no default branch is provided, then a PatternFailure exception is thrown. The
try statement has a catching part catch which matches a thrown exception against all the
provided branches. The default branching is handled by matching with a wild-card in ABS,
we use default to simplify semantics. The other statements are standard in imperative and
object-oriented languages.

Definition 3 (Method)
A method m is a tuple (id , n, v, type, s), where id is the name, n the number of parameters,
v ∈ V n the names of the parameters (which we treat as special variables), the function type :
[1, . . . , n]→ (I∪A) maps parameters to their type and s is a statement of the form s′; return e
where s′ contains no other return. We refer to a method by its unique name and to its return
type by ret(m). We denote the set of all method names by Met.

Example 2
Consider the following method: run is a client which sends 10 messages to a server stored in
the field server (1). It waits until the server resolves the future (2), reads its value (3) and
counts how often the request succeed or not. In case an exception is thrown upon reading from
the future, the client sets its counter to 10 and thus stops the loop from further iterations (4).
The example assumes there are fields server, success and fail, there is an abstract data
type Answer with constructors Ok and Deny and that the method request return a value of
type Answer.
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2. ABS

Unit run ( ){
Int i = 0 ;
while ( i < 11){

Fut<Answer> f = s e r v e r ! r eque s t ( ) ;
await f ?
try{

Answer a = f . get ;
case ( a ){

Ok => s u c c e s s = s u c c e s s + 1 ;
Deny => f a i l = f a i l + 1 ;

}
} catch ( exc ) {

default => i = 10 ;
}
i = i +1;

}
}

The communication history of a process (object or system) is a sequence of communication
events executed by this process (object or system) in the past. Each communication event
describes a visible operation on a future: An event is added if a process starts computing a
future, a process issues a computation by a method call, a process terminates and resolves its
future or a process releases control.

Definition 4 (Communication Events)
The set of all events Ev, is defined by the following grammar. Let ev ∈ Ev.
LetO,O′ range over the set of all object names Ob, f, f ′ over Fut, m over Met, e over expressions
and ~e over lists of expressions.

ev ::=invEv(O,O′, f,m,~e) | invREv(O,O′, f,m,~e) | futEv(O, f,m, e) | futREv(O, f, e)

|awaitEv(O, f, f ′) | throwEv(O, f,m, e) | throwREv(O, f, e)

The events model the following communication

• An invocation event invEv(O,O′, f,m,~e) models that O calls the method m of object O′,
passes ~e as the parameter and uses f as a handle. This does not model that O′ already
received or handled the call.

• An invocation reaction event invREv(O,O′, f,m,~e) models that the object O′ starts the
execution of method m, which was issued by object O with parameters ~e and will resolve
the future f when terminating.

• A resolving event futEv(O, f,m, e) models that object O resolves f by finishing the exe-
cution of method m. Future f now contains e.

• A fetching event futREv(O, f, e) models that object O reads from future f the value e.

• A suspending event awaitEv(O, f, f ′) models that object O suspends the computation of
future f until future f ′ is resolved.
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2. ABS

• A throwing event throwEv(O, f,m, e) models that object O resolves f by throwing an
exception while executing method m. Future f does not contain the thrown exception e.

• A catching event throwREv(O, f, e) models that object O catches exception e when read-
ing from future f .

A history is a sequence of events.

Example 3
One iteration of the code in Example 2 can produce the following history from the view of O,
if executed from an object O and a process computing f0:

[invEv(O,O′, f, req, 4), awaitEv(O, f0, f), futREv(O, f,Ok)]

Not all histories describe a possible sequence of communication events. For example, each
invocation event may have at most one corresponding invocation reaction event and each
invocation event must use a fresh future.

Histories that can be generated by an ABS system are well-formed.

Definition 5 (Well-Formed Histories)
Let h be a history. h is well-formed if the following holds for every ieq|h|. For readability we
refrain from explicitly binding all variables in the conditions. All free variables are implicitly
existentially bound.

• If h[i] is an invocation event, then its future does not occur in h[1..i− 1].

h[i] = invEv(O,O′, f,m, e)→ f 6∈ futures(h[1..i− 1])

Where futures(h) is the set of all futures occurring somewhere in the history h.

• If h[i] is an invocation reaction event, then there is exactly one corresponding invocation
event and no other invocation reaction event on the same future in h[1..i − 1] and the
objects are not identical.

h[i] = invREv(O,O′, f,m, e)→
∃j < i. h[j] = invEv(O,O′, f,m, e)∧(

∀j < k < i. h[k] 6= invREv(O,O′, f,m, e)
)
∧O 6= O′

• If h[i] is a resolving event, then there is a corresponding invocation reaction event and
there is no other resolving event and no throwing event on the same future in h[1..i− 1]

h[i] =futEv(O, f,m, e)→ ∃j < i. h[j] = invREv(O,O′, f,m, e)∧
∀k < i. h[k] 6= futEv(O, f,m, e) ∧ h[k] 6= throwEv(O, f,m, e)

• If h[i] is a throwing event, then there is a corresponding receiving event and there is no
other throwing event and no resolving on the same future in h[1..i− 1]

h[i] =throwEv(O, f,m, e)→ ∃j < i. h[j] = invREv(O,O′, f,m, e)∧
∀k < i. h[k] 6= futEv(O, f,m, e) ∧ h[k] 6= throwEv(O, f,m, e)
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• If h[i] is a fetching event, then there is a corresponding resolving event in h[1..i− 1]

h[i] = futREv(O, f, e)→ ∃j < i. h[j] = futEv(O′, f,m, e)

• If h[i] is a catching event, then there is a corresponding throwing event in h[1..i− 1]

h[i] = throwREv(O, f, e)→ ∃j < i. h[j] = throwEv(O′, f,m, e)

• If h[i] is a suspending event, then there is a corresponding invocation reaction event in
h[1..i− 1] and no resolving event on the same future in between. Also the future which
is waited for is invoked.

h[i] =awaitEv(O, f, f ′)→

∃j < i.
(
h[j] = invREv(O′, O, f,m, e)∧

∀j < k < i.
(
h[k] 6= futEv(O, f,m, e) ∧ h[k] 6= throwEv(O, f,m, e)

))
∧ ∃j < i. h[j] = invEv(O′′, O′′′, f ′,m′, e′)

Example 4
Consider the history from Example 3:

[invEv(O,O′, f, req, 4), awaitEv(O, f0, f), futREv(O, f,Ok)]

It is not well-formed, because it only describes the part of O – the future f is read without
being resolved first. A well-formed history is:

[invEv(O,O′, f, req, 4), awaitEv(O, f0, f), invREv(O,O′, f, req, f), futEv(O′, f, req,Ok), futREv(O, f,Ok)]

Futures identify a communication. Thus when renaming a future consistently, i.e. renaming
it in every event in a history where it occurs, does not change the communication pattern.
We say that two histories are future-equivalent if one can be transformed into the other by
renaming futures.

Definition 6 (Future-Equivalence)
Two well-formed histories s, s′ are equivalent up to futures, if s′ is equal to s after renaming
all futures which are introduced within s′. A future is introduced by an invocation or an invo-
cation reaction event. Let {f | ∃i ≤ |s|. s[i] = invEv(O,O′, f,m, e) ∨ invREv(O,O′, f,m, e)} =
{f1, . . . , fn} = F (s) be the set of all futures occurring in s. Then

s ≡Fut s
′ = ∃f ′1, . . . , f ′n ∈ Fut \ F (s). s = s′[f1\f ′1] . . . [fn\f ′n]

where [f\f ′] is syntactical substitution of every occurrence of f by f ′.

During the execution of a process, at every step at most one single event is appended to the
history. Session types require other operations on histories to specify branching and repetition.
We introduce the following operators on sets of sequences as regular expression for histories.

Definition 7 (Regular Expressions of Sequences)
Let S, S′ be two sets of sequences and k a natural number. We use the following operators on
sets of sequences as regular expression for histories, where L maps such an expression to the
set of sequences it describes.
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• For a set S we define L(S) = S

• S ◦ S′ with L(S ◦ S′) = {s ◦ s′ | s ∈ L(S), s′ ∈ L(S′)} is componentwise concatenation

• S + S′ with L(S + S′) = L(S) ∪ L(S′) is alternative

• Sk is k-bounded repetition with

– L(S0) = {ε},
– L(S1) = {s ∈ S | s ≡Fut s}
– L(Sk) = L(S1 ◦ Sk−1), k > 1

• L(S∗) =
⋃
k∈N S

k is unbounded repetition

We define the semantics of processes, objects and systems in terms of small step semantics.

Definition 8 (Process)
Let D be the set of possible values for variables and fields. A process is a tuple (s, ρ, h, f)
where

• s is a statement or ε,

• ρ : V → D maps variables and parameters to their values,

• h is a history

• f is a future

We assume that ρ respects the type of the variable. We denote the history component of a
process p = (s, ρ, h, f) with his(p) = h. A process is terminated if s = ε

The semantics of processes is defined in Figure 2.1 as the small-step semantics (σ, p) →O,F

(σ′, p′), which transforms one process p executing method m in an object with name O into
another process p′ by executing the next statement with a store σ : Fl → D and possible
modifying the store into σ′. The set of futures F denotes the set of already used futures and
π is a meta variable for the remaining program. The rules are standard with the exception of
suspend: The await statement is not removed, only a awaitEv event is added. The object
semantics are suspending a process if it adds an awaitEv event, the await statement is removed
upon reactivation. It is used to keep track of what future a suspended process is waiting for.
We denote the set of all processes with Proc.

The semantics of expressions is defined with a partial function J·Kσ,ρ:

Je1 + e2Kσ,ρ = Je1Kσ,ρ + Je2Kσ,ρ if Je1Kσ,ρ, Je2Kσ,ρ ∈ N
Je1 ∗ e2Kσ,ρ = Je1Kσ,ρ ∗ Je2Kσ,ρ if Je1Kσ,ρ, Je2Kσ,ρ ∈ N

J−e1Kσ,ρ = −Je1Kσ,ρ if Je1Kσ,ρ ∈ N
Je1&e2Kσ,ρ = Je1Kσ,ρ ∧ Je2Kσ,ρ if Je1Kσ,ρ, Je2Kσ,ρ ∈ B

J!e1Kσ,ρ = ¬Je1Kσ,ρ if Je1Kσ,ρ ∈ B
JvKσ,ρ = ρ(v)

JflKσ,ρ = σ(fl)

JC(~e)Kσ,ρ = C(
−−−→
JeKσ,ρ)
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2. ABS

(
σ, (v = e;π, ρ, h, f)

)
→O,F

(
σ, (π, ρ[v 7→ JeKσ,ρ], h, f)

) assign

(
σ, (fl = e;π, ρ, h, f)

)
→O,F

(
σ[fl 7→ JeKσ,ρ], (π, ρ, h, f)

) assignField

(
σ, (C v = c(~e);π, ρ, h, f)

)
→O,F

(
σ, (π, ρ[v 7→ Jc(~e)Kσ,ρ)], h, f)

) init

f ′ 6∈ F ρ′ = ρ[fr 7→ f ′](
σ, (Fut〈T 〉 fr = fl !m(~e);π, ρ, h, f)

)
→O,F

(
σ, (π, ρ′, h ◦ [invEv(O, JflKσ,ρ, f ′,m,

−−−→
JeKσ,ρ)], f)

) call

(
σ, (await f ′;π, ρ, h, f)

)
→O,F

(
σ, (await f ′;π, ρ, h ◦ [awaitEv(O, f, f ′)], f)

) suspend

(
σ, (return e, ρ, h, f)

)
→O,F

(
σ, (ε, ρ, h ◦ [futEv(O, f,m, JeKσ,ρ)], f)

) return

(
σ, (throw e;π, ρ, h, f)

)
→O,F

(
σ, (ε, ρ, h ◦ [throwEv(O, f,m, JeKσ,ρ)

)
], f)

throw

JeKσ,ρ = true(
σ, (if(e)then{s}else{s′};π, ρ, h, f)

)
→O,F

(
σ, (s;π, ρ, h, f)

) ifthen

JeKσ,ρ = false(
σ, (if(e)then{s}else{s′};π, ρ, h, f)

)
→O,F

(
σ, (s′;π, ρ, h, f)

) ifelse

JeKσ,ρ = false(
σ, (while(e)s;π, ρ, h, f)

)
→O,F

(
σ, (π, ρ, h, f)

) whilefalse

JeKσ,ρ = true(
σ, (while(e){s};π, ρ, h, f)

)
→O,F

(
σ, (s; while(e){s};π, ρ, h, f)

) whiletrue

j ∈ I JejKσ,ρ = JeKσ,ρ(
σ, (case(e)(ei ⇒ si)i∈I ;π, ρ, h, f)

)
→O,F

(
σ, (sj ;π, ρ, h, f)

) case

∀j ∈ I. JejKσ,ρ 6= JeKσ,ρ ∃j ∈ I. ei = default(
σ, (case(e)(ei ⇒ si)i∈I ;π, ρ, h, f)

)
→O,F

(
σ, (si, ρ, h, f)

) caseDefault

∀j ∈ I. JejKσ,ρ 6= JeKσ,ρ ∃j ∈ I. ei = default(
σ, (case(e)(ei ⇒ s′i)i∈I ;π, ρ, h, f)

)
→O,F

(
σ, (throw PatternFailure, ρ, h, f)

) caseFail(
σ, (s, ρ, h, f)

)
→O,F

(
σ′, (s′, ρ′, h′, f)

)
h′ = h ◦ s

s = ε ∨ (s = [ev ] ∧ ev 6= throwEv(O′, f,m, e′))(
σ, (try{s}catch(e)

[
b
]+

;π, ρ, h, f)→O,F

(
σ, (try{s′}catch(e)

[
b
]+

;π, σ′, ρ′, h′, f)
) tryInner

(
σ, (s, ρ, h, f)

)
→O,F

(
σ′, (ε, ρ′, h′, f)

)
h′ = h ◦ ev ev = throwEv(O′, f,m, e′)(

σ, (try{s}catch(e)(ei ⇒ s′i)i∈I ;π, ρ, h, f)
)
→O,F

(
σ′, (case(e′)(ei ⇒ s′i)i∈I ;π, ρ

′, h′, f)
) tryF

(
σ, (try{ε}catch(e)(ei ⇒ s′i)i∈I);π, ρ, h, f)

)
→O,F

(
σ, (π, ρ, h, f)

) tryEnd

All free variables are implicitly quantified with existantial quantifiers.

Figure 2.1.: Small-Step Semantics for ABS Processes
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2. ABS

We define the starting of a new method with the following auxiliary function:

Definition 9 (Process Initialisation)
Given a function s that maps method names to the method body belonging to this name, an
event invEv(O,O′, f,m,~e) initilizes a process as follows:

P(invEv(O,O′, f,m,~e)) = (s(m), ρ, f, [invREv(O,O′, f,m,~e)])

where ρ(vi) = ei holds for each ei in ~e.

Each object has several processes, but only one can be active at a time. We refer to the
future an active process is computing as the active future. We say that a process releases or
suspends control when the process becomes deactivated without terminating. Processes share
the heap memory. When a process stops being executed and is continued later, the process
continues with the current heap memory of the object, not the state when the process returned
control. Also whenever a process appends events to its history, the events are also appended
to the objects history.

Definition 10 (Object)
An object is a tuple (O,P, σ, p, h) where

• O ∈ Ob is the name,

• P : N⇀ Proc \ {p} maps numbers to suspended processes,

• σ : Fl → D maps fields to their values,

• p ∈ Proc is the active process and

• h is a history

We identify an object with its name, but write id(o) for the name of an object if we want to
distinguish name and object explicitly.

An object (O,P, σ, p, h) is terminated if p = ⊥ and dom(P ) = ∅, i.e. no object is active and
none is suspended. The semantics of objects are defined with the following rules, where free
variables are implicitly existentially bound:

(σ, p)→O,F (σ′, p′) his(p) = his(p′)

(O,P, σ, p, h)→F (O,P, σ′, p′, h)
inner

(σ, p)→O,F (σ′, p′) his(p′) = his(p) ◦ [ev ] h′ = h ◦ [ev ]
ev = throwEv(O, f,m, e) ∨ ev = futEv(O, f,m, e)

(O,P, σ, p, h)→F (O,P, σ′,⊥, h′) terminate

(σ, p)→O,F (σ′, p′) his(p′) = his(p) ◦ [ev ] h′ = h ◦ [ev ]
ev = awaitEv(O, f, f ′) i 6∈ dom(P )

(O,P, σ, p, h)→F (O,P [i 7→ p′], σ′,⊥, h′)
suspend

(σ, p)→O,F (σ′, p′) his(p′) = his(p) ◦ [ev ] h′ = h ◦ [ev ]
ev 6= throwEv(O, f,m, e)) ev 6= futEv(O, f,m, e) ev 6= awaitEv(O, f, f ′)

(O,P, σ, p, h)→F (O,P, σ′, p′, h′)
communicate

14



2. ABS

The rule inner handles the case where the active process executes a statement without adding
an event to its local history. The rule terminate handles termination and suspend suspension.
These rules are triggered by the added event, not by comparing the code of the process. Finally
communicate handles the case where an event is added, but does not alter the active process.

The active future of an object, is the future which is computed by the active process.

Definition 11 (Active Future)
Let o = (O,P, σ, p, h) be an object with p = (s, ρ, h, f). The active future of O is the future of
p and we write active(o) = f .

The history of a system S is the behavior of the whole system. To analyze the behavior in
the history from a local point of view, we introduce a projection on objects. The projection
describes the behavior of a single object, i.e. those events which are issued by a given object.

Definition 12 (Local History)
Let h be a history and O an object. The projection of h to O is the local history that results
from removing all events from h which are not issued by O. The function h �O is defined as
follows:

(h ◦ h′)�O = h�O ◦h′ �O

[invEv(O′, O′′, f,m,~e)]�O =

{
[invEv(O′, O′′, f,m,~e)] if O′ = O
ε otherwise

[invREv(O′, O′′, f,m,~e)]�O =

{
[invREv(O′, O′′, f,m,~e)] if O′ = O
ε otherwise

[futEv(O′, f,m, e)]�O =

{
[futEv(O′, f,m, e)]] if O′ = O
ε otherwise

[futREv(O′, f, e)]�O =

{
[futREv(O′, f, e)] if O′ = O
ε otherwise

[throwEv(O′, f,m, e)]�O =

{
[throwEv(O′, f,m, e)]] if O′ = O
ε otherwise

[throwREv(O′, f, e)]�O =

{
[throwREv(O′, f, e)] if O′ = O
ε otherwise

[awaitEv(O′, f, f ′)]�O =

{
[awaitEv(O′, f, f ′)] if O′ = O
ε otherwise

Definition 13 (System)

A system is a tuple (
−→
Sys,
−−→
Sch, h) where

−→
Sys is a partial function mapping N to objects,

−−→
Sch is

a function mapping objects to schedulers and h is a history.

We leave the set of schedulers underspecified, the ABS semantics are defined for any sched-
uler. We only aussume the following:

• The set of schedulers is not empty

• A scheduler sch is a partial function that maps the set (start×Met×Fut)∪(react×Fut)
to other schedulers. A function application sch((start,m, f)) queries whether a process
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2. ABS

for the method m can be activated, an application sch(react, f) queries whether the
process computing the value of f can be reactivated. If a query succeeds, sch returns a
new scheduler, otherwise ⊥.

We write S for the set of all systems and his(S) for the history of a system S. The semantics
of systems is defined by the following 4 rules:

• The rule internal handles the case where an object o is reduced to o′, without adding

an event to the local history. The partial mapping
−→
Sys is updated to

−→
Sys ′ by setting−→

Sys ′ =
−→
Sys[i 7→ o′] for the i ∈ dom(

−→
Sys) such that

−→
Sys[i].

i ∈ dom(
−→
Sys)

−→
Sys[i] = o o→F o

′ his(o′) = his(o)
F = {f | ∃i ≤ |h|. h[i] = invEv(O,O′, f,m, e)}

(
−→
Sys,
−−→
Sch, h)→ (

−→
Sys[i 7→ o′],

−−→
Sch, h)

internal

• The rule communicate handles the case where an object o is reduced to o′, but adds
an event ev to the local history.

i ∈ dom(
−→
Sys)

−→
Sys[i] = o o→F o

′ his(o′) = his(o) ◦ [ev ]
F = {f | ∃i ≤ |h|. h[i] = invEv(O,O′, f,m, e)}

(
−→
Sys,
−−→
Sch, h)→ (

−→
Sys[i 7→ o′],

−−→
Sch, h ◦ [ev ])

communicate

• The rule start starts a new process in an object o, if o does not have any active process.
This is the case if there is an invocation event ev = invREv(O′, O, f,m, e) in the global
history without a corresponding invocation reaction event and o is inactive. Then ev is
added to the global history and the local history of o and a new process is generated
from ev and set as active for o. The scheduler is queried with (start,m, f) where f is
the new future for the started process.

∃i ≤ |h|. h[i] = invREv(O′, O, f,m, e)
∀j ≤ |h|. h[j] 6= invREv(O′, O, f,m, e)

active(o′) = f
−−→
Sch(O)(start,m, f) 6= ⊥

−−→
Sch ′ =

−−→
Sch[O 7→

−−→
Sch(O)(start,m, f)]

i ∈ dom(
−→
Sys)

−→
Sys[i] = (O,P, σ,⊥, h′′)

o′ = (O,P, σ,P(ev), h′′ ◦ [invREv(O′, O, f,m, e)]

(
−→
Sys,
−−→
Sch, h)→ (

−→
Sys[i 7→ o′],

−−→
Sch ′, h ◦ [invREv(O′, O, f,m, e)])

start

• The rule continue starts a process that was suspended before in an object o. The
object o must be inactive and is transformed to the object o′ by chosing a process from
the process pool P which has await f as its first statement, checking that f has been
resolved, removing this statement and setting it as the active process. The scheduler is
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2. ABS

queried with (react, f ′) where f is the future of the reactivated process.

i ∈ dom(
−→
Sys)

−→
Sys[i] = (O,P, σ,⊥, h′)

o′ = (O,P [j 7→ ⊥], σ, (π, σ′, ρ, h′′, f ′), h′)
−−→
Sch(O)(react, f ′) 6= ⊥

−−→
Sch ′ =

−−→
Sch[O 7→

−−→
Sch(O)(react, f ′)]

j ∈ dom(P ) P [j] = (await f ;π, σ′, ρ, h′′, f ′)

(
−→
Sys,
−−→
Sch, h)→ (

−→
Sys[i 7→ o′], h)

continue

A system S is terminated, written terminated(S) if all its objects are terminated. A system
S is dead-locked, if it can not make any further execution step and not all of its objects are
terminated. The big-step semantics describe when a system (object, process) realizes a history.

Definition 14 (Big-Step Semantics)
A system S generates a history h, if it can terminate in a state Sn with his(Sn) = h:

S ⇓ h ⇐⇒ ∃S1, . . . , Sn ∈ S. S → S1 → · · · → Sn ∧ his(Sn) = h ∧ ¬∃S′ ∈ S. Sn → S′

Note that the scheduler is not purely functional: Upon (re-)activating a process, the scheduler
may change. The scheduler may have a store and keep track of (re-)activated futures. Thus it
is possible to define a scheduler which changes its behavior after counting or handling a certain
method. We use a scheduler with a store for futures in Section 4.3. To specify how the values
futures are read, we must be able to keep track of the propagation of futures. For simplicity,
we only specify that if a future is communicated via a return value, then the return type of
the corresponding value is an algebraic data type and all the future are available at the first
level of the return value.

With these restrictions, we can represent a return value as the constructor and a list of pairs
(i, v) with the meaning that the ith parameter is the value v.

Example 5
Let A be an algebraic data type with one constructor c, that has arity 3 and takes two integer
and one future parameter.

A m(){ return c (10 ,100 , f ) ; }

The return value may be described by (c, {(1, 10), (2, 100), (3, f)}), where the pair (1, 10) de-
scribes that the first parameter is the integer 10.

We use the description of parameters as their position in the parameter list to encode how
futures are passed.

2.2. ABSDL

In this section we describe the ABS Dynamic Logic (ABSDL), which is used to specify class
invariants. A class invariant is a description of an object’s inner state and history that must
hold upon object instantiation and whenever any process releases control or terminates. Such
invariants are guarantees between processes.
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2. ABS

To model the memory of objects, ABSDL uses heap functions which map locations to values.
A location is a pair of an object and a field and a value is an element of some domain D. A
heap is a function that maps locations to domain values. We write Heap for the set of all heaps
and Loc for the set of all locations:

Heap = Ob× Fl → D

Loc = Ob× Fl

To verify that a method with method body m satisfies an invariant ϕ, ABSDL checks the
validity of ϕ⇒ [m]ϕ: if ϕ holds before executing m, then it holds afterwards if m terminates.
The verification tool KeY-ABS can only handle partial correctness, i.e. it assume that all loops
are always executed finitely often.

ABSDL extends first-order logic with updates and symbolic execution. Updates have the
form v := t and denote that the value of the variable v is changed to t. As the object history and
memory are handled as special program variables these updates can denote all state changes.
Symbolic execution denotes that a modality [s] of statements s is unrolled one statement at
a time. The first statement inside the modality is symbolically executed by removing the
statement and appending an update that encapsulates the effect of the statement.

Symbolic execution does not work on the actual values, but on symbolical ones which describe
a possible set of values. For example, the formula o.f > 0 ⇒ i = o.f ∗ 2 describes that the
variable i contains a value which is the twice as big as the value of o.f , issuming that o.f is
strictly positive.

Definition 15 (Signature)
Let (A,C, I) be an ABS data type system. A signature is a tuple Σ = (F,P,V,PV,S) where F
is a set of function symbols, P is a set of predicate symbols, V is a set of logical variables, PV
is a set of program variables and S is the set of sorts.

We assume that every ABS class, interface and abstract data type is a sort and that the set
of sorts is closed under future types, sequences and sets. Additionally we demand that types
for heap memory, locations and fields are in S. Any is a special sort s.t. every sort is a subset
of Any.

A ⊆ S ∧ C ⊆ S ∧ I ⊆ S

s ∈ S→ {Seq〈s〉,Set〈s〉,Fut〈s〉} ⊂ S

{Any ,Heap,LocSet ,Field} ⊆ S

We write a function or predicate symbol f with arity n as fn and assume the following prop-
erties:

• All sets in the signature are pairwise disjoint.

• There is a program variable for the heap memory: heap : Heap ∈ PV.

• There is a program variable for the history: history : History ∈ PV.

• There is a function symbol flΣ for every field fl of every ABS class we reason about, and
additionally the created0 field with created0 : Field .

• There is a function symbol CΣ
0 for every constructor C of an abstract data type.
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2. ABS

• The following function symbols are used to model the heap, sets, sequences and events:

– For the heap: store4 : Heap, select3 : Any , anon3 : Heap

– For sets: singleton1, union2

– For sequences: seqSingleton1, seqEmpty0, seqConcat2, issuedBy2

– For events: invEvΣ
5 , invREv

Σ
5 , futEv

Σ
4 , futREv

Σ
3 , throwEv

Σ
4 , throwREv

Σ
3 , awaitEv

Σ
3

• There are predicate symbols wellFormed1, pattern3, outer2, paramAt4 ∈ P.

We mostly omit the arity index and the Σ superscript in the rest of this work for readability.

Definition 16 (Syntax)
Given a fixed signature Σ, we define formulas ϕ, terms t and updates U by the following
grammar, where p ranges over P, f over F, T over S, v over PV, x over V, n over Z and π over
the set of ABS statements:

U ::= v := t | U ||U | {U}U
ϕ ::= true | false | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | p(t . . . t) | t ≥ t | t < t |

∀T x;ϕ | ∃T x;ϕ | [π]ϕ | {U}ϕ | ϕ↔ ϕ | ϕ→ ϕ

t ::= v | {U}t | f(t . . . t) | t .= t | n | t+ t | t− t | TRUE | FALSE

We denote the set of all formulas with Frm and the set of all terms with Trm. We only
consider well-typed formulas and terms with respect to the sorts. We again refrain from giving
a formal type system for terms and formulas. The extensions needed for encoding session types
are only additional predicate and function symbols. A formal treatment can be found e.g. in
[30].

Example 6
Consider the following formula:

{heap := store(heap, o,fl , 10)}∃Int i;
(
select(heap, o,fl) = 2 ∗ i ∧ i > 0

)
It expresses that in a state after the value 10 is stored in o.fl , the value of o.fl is even.

Definition 17 (Interpretation and Configuration)
Let D be the domain, a non-empty set of values. Let I be an interpretation that maps every
function symbol fn ∈ F to a function I(fn) : Dn → D (where the elements of the preimage are
typed according to the function) and every predicate symbol pn ∈ P to a predicate I(pn) ⊆ Dn.
A configuration is a function σ : PV→ D denoting the current values of the program variables.
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2. ABS

The mandatory function symbols are interpreted as follows.

I(CΣ) = C

I(flΣ) = fl

I(select) : Heap × Ob× Fl → D

I(select)(heap, ob,fl) = heap(ob,fl)

I(store) : Heap × Ob× Fl ×D → Heap

I(store)(heap, ob,fl , d) = heap[(ob,fl) 7→ d]

I(anon) : Heap × P(Ob× Fl)×Heap → Heap

I(anon)(heap1, locset , heap2) = heap1[(o, fl) 7→ heap2(o, fl)](o,fl)∈locset

I(singleton) ∈ P(D)

I(singleton)(d) = {d}
I(union) ∈ P(D)× P(D)→ P(D)

I(union)(A1, A2) = A1 ∪A2

I(seqEmpty) ∈ D∗

I(seqEmpty) = ε

I(seqSingleton) ∈ P(D)

I(seqSingleton)(d) = [d]

I(seqConcat) ∈ D∗ ×D∗ → D∗

I(seqConcat)(s1, s2) = s1 ◦ s2

I(pattern) ⊆ Ev∗ × P(Ev∗)× N
I(pattern)(s, S, k) ⇐⇒ ∃s′ ∈ L(Sk). s ≡Fut s

′

I(outer) ⊆ D × C
I(outer)(d, c) ⇐⇒ d = c(~e) for some parameters ~e

I(paramAt) ⊆ D ×D × N
I(paramAt)(d1, d2, i) ⇐⇒ ∃C ∈ Con. d1 = C(~e) ∧ e[i] = d2 for some parameters ~e

I(issuedBy) ⊆ Ev∗ × Fut

Intuitively, I(issuedBy)(S, f) holds if every event in S has been issued by the process computing
f . The definition for invREv, awaitEv, futEv, and throwEv is straightforward. E.g., for awaitEv:

I(awaitEvΣ) : Ob× Fut× Fut→ Ev

I(awaitEvΣ)(O, f, f ′) = awaitEv(O, f, f ′)

We could add additional parameters to invEv, throwREv and futREv to keep track of the active
future or add auxiliary structures like a special program variable that maps positions in the
history to the future which issued them. For presentations sake, as the main focus of this work
is not extending ABS or ABSDL, we let I(issuedBy) underspecified.

For readability we write ε for seqEmpty and analogously for seqSingleton and seqConcat .
Also we write o.fl for select(heap, o,fl).

The semantics of the modality is a Kripke Structure which models state transition with
transitions between configurations.
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Definition 18 (Kripke Structure)
A Kripke Structure is a tuple (D, I,Conf, δ), where D is the domain, I the interpretation,
Conf the set of configurations and the function δ : ABS → (Conf → P(Conf)) models state
transitions. A statement π is mapped on a function from configurations to configuration. This
function models the effect of π on the memory. We write δπ(σ) instead of δ(π)(σ).

The semantics is defined with a evaluation function which is dependent on a configuration
and a assignment on logical variables.

Definition 19 (Semantics)
Let β : V → D be an assignment on logical variables. We define the semantics of ABSDL
formulas, terms and updates with a function valσ,β which maps formulas to truth values.
terms to elements of the domain and updates to functions Conf → Conf.

The semantic of terms and the FO-fragment of ABSDL is standard and we refrain from
presenting it. The semantics of modality and updates are:

valσ,β(v := t)(σ′) = σ′[v 7→ valσ,β(t)]

valσ,β(u1||u2)(σ′) = valσ,β(u2)(valσ,β(u1)(σ′))

valσ,β({u}t) = valvalσ,β(u)(σ),β(t)

valσ,β([π]ϕ) =


tt if ∀σ′ ∈ δπ(σ). valσ′,β(ϕ) = tt
tt if δπ(σ) = ∅
ff otherwise

Definition 20 (Validity)
An ABSDL formula ϕ is valid iff valσ,β = tt for all configurations σ and all variable assignments
β.

Definition 21 (Invariant)
Let C be a class and ϕ a formula which only contains fields of this class and constants as terms.

The formula ϕ is an invariant for C, iff

ϕ→ [try{s}catch(Exception e){default =>}]ϕ

holds for every method-body s in C and ϕ holds at every process release point, i.e. after the
execution of every await statement.
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2.3. Calculus

A sound calculus for ABSDL has been developed in [15], which is based on the JavaDL calculus
in [30]. We refrain from presenting the whole calculus and only present some rules to illustrate
symbolic execution.

Definition 22 (Sequent)
A sequent is a pair of formula sets (Γ,∆) ∈ Frm× Frm, written Γ⇒ ∆.
We write Γ, ϕ1 . . . ϕn ⇒ ψ1 . . . ψn,∆ for the sequent Γ ∪n {ϕn} ⇒ ∆ ∪n {ψn}

A sequent ϕ1 . . . ϕk ⇒ ψ1 . . . ψl encodes the formula
∧
k ϕk →

∨
l ψl:

valσ,β({ϕ1 . . . ϕk} ⇒ {ψ1 . . . ψl}) = valσ,β(
∧
k

ϕk →
∨
l

ψl)

Definition 23 (Rule)
A rule is a pair (Seq∗,Seq) where the first component is called premisses and the second one
conclusion. A rule (p1 . . . pn, q) is sound if for all configurations c the following property holds:∧

i≤n
pi ⇒ q

We use the following rule schema to denote a rule (p1 . . . pn, q):

p1 . . . pn nameq

A rule without premisses is called axiom. We prove a sequent by building a proof tree.

Definition 24 (Proof Tree)
A proof tree is a tree where the nodes are sequents or the symbol close. The proof tree for
a sequent S has S as its root. For each node q that is a sequent there is a rule, such that
all children (p1 . . . pn) are the premisses of this rule and q is the conclusion. If a rule has no
premisses the node q has close as its sole child.

A proof for a sequent S is a tree where all leaves are close.
The formulas in a rule may contain schematic variables which have to be instantiated with

terms or formulas, before the rule can be applied to a sequent.
If a rule has side conditions to the instantiations of the schematic variables we write them on

the left side, while the name is written on the right side. We write down proof trees with the
root sequent at the bottom, with children above their parent node and the rule denotations in
between.

Definition 25 (Rewrite Rules)
A rewrite rule is a triple (t1, t2, ϕ) ∈ (Trm× Trm× Frm) ∪ (Frm× Frm× Frm) written

t1  t2 if ϕ

with the meaning that in every sequent we can always replace t1 with t2 in any formula if the
side condition ϕ holds. We denote each rewrite rule with a name and omit the side condition
if the side condition is true.
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A modality is resolved by symbolic execution rules, which encapsulate the effect of the first
statement in an update. As an example, the following rule is used for asynchronous method
calls without parameters on objects store in fields:

Γ⇒ {U}(select(heap, self ,fl) 6= null),∆

Γ⇒
{
U
}{
v := f ||history = history ◦ [invEv(self , self .fl , f,m, ε)]

}
[π]ϕ,∆

f is fresh Call
Γ⇒ {U}[Fut〈T 〉 v = fl !m();π]ϕ,∆

Try blocks and exceptions are handled as in Java, except that the catch block is transformed
into a case statement instead of directly choosing the correct one. The rules can be found e.g.
in [30].

The paramAt and outer predicates can be unrolled to a first-order formula. For each con-
structor C with arity n, we define two rules, both with the side-condition that i is a numeral
smaller n.

paramAt(t1, t2, i) ∃ConC. ∃Any e1, . . . , en; t1 = C(e1, . . . , en) ∧ ei
.
= t2

outer(t1, C) ∃Any e1, . . . , en; t1 = C(e1, . . . , en)

The paramAt(t1, t2, i) predicate describes that the term t1 has C as its outermost constructor
and the ith parameter is t2. The outer(t1, C) predicate describes that the term t1 has C as its
outermost constructor.

The following rule splits a pattern expression into three cases, depending how often the set
of sequences is repeated.

pattern(s, S, k) 
s
.
= ε ∧ k .

= 0
∨∃Seq〈Ev〉s′; (s′ ∈ S ∧ s≡̇Futs

′) ∧ k .
= 1

∨∃Seq〈Ev〉s′, s′′; s = s′ ◦ s′′′ ∧ pattern(s′, S, k − 1) ∧ pattern(s′′, S, 1) ∧ k > 1

To check future equality we introduce a static check. This is needed because substitution is
only supported for program variables with updates, but we need to check arbitrary terms.

Definition 26
Let s1, s2 ∈ Trm be two closed terms, i.e. they contain no free variables, and without updates.
We say that s1 and s2 are syntactically future equivalent, if we can obtain s2 from s1 be
replacing function symbols of future-type and arity 0 consistently Let {f1, . . . , fn} be the set
of all such function symbols occurring in s2. Then

∃f ′1, . . . , f ′n ∈ Fut. s = s′[f1\f ′1] . . . [fn\f ′n]

Where [f\f ′] is syntactical substitution of every occurrence of f by f ′, must hold.

Note that this is a check, we do not substitute the symbols. This check allows us to formulate
a simple rule for ≡̇Fut

s1≡̇Futs2  true if s1 and s2 are syntactically future equivalent

To symbolically execute a loop one can either unroll it, i.e. transform it into a branching,
or provide a loop invariant. A loop invariant is a formula that describes the states before the
execution of the loop and and the execution of each iteration. This allows to approximate the
post state after executing the whole loop.
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2. ABS

In [30] a loop invariant rule for JavaDL was introduced, which uses anonymizing. Anonymiz-
ing marks a part of the heap memory as unchanged, i.e. it is not written during a loop iteration.
This allows to keep information from the pre-state without directly encoding it into the loop
invariant. We use a variant of this rule. The rule for ABSDL is more simple because ABS
does not have break and continue statements. The subcase presented here also has no return
statement inside the loop body.

Γ⇒ {U}inv ,∆

Γ, {U}{UA}(inv ∧ g)⇒ {U}{UA}[bd ]inv ,∆

Γ, {U}{UA}(inv ∧ ¬g)⇒ {U}{UA}[π]ϕ,∆
loopInvariantAnon

Γ⇒ {U}[while(g)bd ; π]ϕ,∆

Where

UA = {history := history ◦ s || old history := history ||
heap := anon(heap, T, heap′) || v1 := v′1 || . . . || vm := v′m}

for a given set of locations T , formula ϕ, all local variables v1, . . . , vm which occur on the
left-hand side of assignment in bd and fresh function symbols s, heap′, v′1, . . . , v

′
m of fitting

sorts.
The first branch shows that the invariant holds in the pre-state. The second branch shows

that the invariant is preserved by the loop body. The third branch continues the proof.

Example 7
Consider the sequent

i > 0⇒
[
while(i > 0){Fut〈Int〉f = fl !m(); }

]
i
.
= 0

A fitting loop invariant would be

inv = ∃Seq〈Ev〉s′; history
.
= old history ◦ s′ ∧∃Futf ′; ∃Int k. pattern(s′, {[invEv(self , self .f,m, f ′]}, k)

inv = i ≥ 0 ∧
∃Seq〈Ev〉s′; history

.
= old history ◦ s′∧

∃Futf ′; ∃Int k. pattern(s′, {[invEv(self , self .f,m, f ′]}, k)

After applying the loopInvariantAnon rule there are three open branches

• The first branch has the form
i > 0⇒ inv

This case can be closed by choosing s′ = ε and k = 0

• The second branch has (simplified) the form

i > 0, pattern(s′′, {[invEv(self , self .f,m, f ′], k′)⇒ {history = s′′}[Fut〈Int〉f = self .f.m()!; ]inv

After executing the method body it has the form

i > 0, pattern(s′′, {[invEv(self , self .f,m, f ′], k′)⇒ {history = s′′ ◦ [invEv(self , self .f,m, f ′′]}inv
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2. ABS

Thus it remains to show

∃Seq〈Ev〉s′; history
.
= s′′ ◦ s′ ∧ ∃Futf ′; ∃Int k; pattern(s′, {[invEv(self , self .f,m, f ′]}, k)

under the premise
pattern(s′′, {[invEv(self , self .f,m, f ′], k′))

This can be done by instantiating s′ with [invEv(self , self .f,m, f ′′, ε], k with k′, f ′ with
f ′′ and showing that

[invEv(self , self .f,m, f ′′, ε]≡̇FutinvEv(self , self .f,m, f ′′, ε]

This holds as both sides of the equation are syntactically equivalent.

• The last branch has (simplified) the form

i ≥ 0, i ≤ 0⇒ i
.
= 0

This also obviously holds.
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Session types specify a communication between endpoints. These communications can be
viewed as the history a system realizes. Thus session types specify the set of valid histories.
A system is captured by a type if all histories it can realize are described by the session
type. Session types are an established specification language for channel-based asynchronous
communication [29, 7, 18]. With channels, three actions must be modeled at global level:
Sending data, choosing a communication and repeating a communication.

The ABS concurrency models requires more actions. The endpoints are now processes, which
are bundled by their object. To specify cooperative scheduling, our session types have actions
for releasing and regaining control. Sending data can be done in two ways: by a method call
or by returning a value and reading it. We handle the method call analogously to sending data
over a channel in e.g. [29] but use different actions for resolving a future and reading from it,
than for sending and receiving data via a method call. The reason is that several processes
can read from the same future, there may be arbitrary actions between resolving and reading
and that a process may read several times from the same future.

These additional actions, the cooperative scheduling and the fixed order of operations on
futures lead to a model with a more complex concept of well-formedness of types compared to
the model for asynchronous communication on channels in [18]. The complexity arises because
at every event one must check the already executed communication events. E.g. it must be
ensured that when a future is resolved at position i, it must have been used to start a process
before and that this process is currently active in its object.

The different ways to send data also require a more convoluted handling of branching.
Channel-based systems can label each branch with a label and send the label to communicate
which branch has been chosen to resume the session. In the ABS concurrency model each
communication either starts or terminates a process and can not be used for arbitrary data:

• If a process needs to communicate a choice to an already running process, this must be
encoded into the return value if further data has to be passed.

• If a process needs to communicate a choice to a not running process, this must be encoded
into the call.

We denote the first case as backward choice and the second as forward choice. In one branching
backward and forward choices may be mixed, but backward choices require additional concepts,
because the choice is read by the receiving process when accessing the communicating future,
not when the future is resolved.

We follow mostly [18] for syntax and presentation. In this Chapter we present the syntax
and semantics of types, the projection of global to local type, the translation into an ABSDL
invariant and describe under which conditions we can state a fidelity theorem.
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3.1. Global Types

A global type describes the communication within a closed system of objects.
To reduce the complexity introduced by asynchronous calls and delays, the global type

describes one possible run of the system. In this run, everything happens exactly in the same
order as specified and without delays. This allows a compact representation of concurrent
systems.

To reason about the actual systems with asynchronous calls and delays, the system may not
only realize the history of this run, but a permutation of it. But the reorderings of events must
be invisible to any object. Every object can not distinguish the simple system without delays
and the real system with delays.

In this section we present the syntax of global types. The well-formedness conditions are
presented in Section 3.5, the translation into a regular expression in Section 3.4.

To initiate the communication we use a special object 0. The first action in every type must
be a call from 0 to some other object. Afterwards 0 is not part of the communication, i.e. it
can not be called and has no active processes.

Definition 27 (Global Types)
Let J range over P(N) with |J | ≥ 1, p,q over Ob, f over Fut, m over Met, C over Con,
R ∈ P(Fut× N) over sets of pairs of futures and numbers.

The syntax of global types is defined by

G ::= p
f−→ q :m(R) . G

∣∣ p↓f : (C,R) . G
∣∣ p↑f : (C,R) . G

∣∣
Rel(p, f) . G

∣∣ p{Gj}j∈J
∣∣ G∗ . G

∣∣ end
If a type does not have the form end,G . G′,p{Gj}j∈J or G∗ we say the type is simple.

The call action p
f−→ q :m(R) models that the currently active process at the object p calls

method m on object q and q starts a new process. The call is handled by the future f and other
futures are passed as described by R. E.g. for R = {(i, f1), (j, f2), . . . } the future f1 is passed
as the ith parameter and the future f2 as the jth parameter, etc. A call action corresponds
to an asynchronous call in ABS and to a sequence of an invocation and an invocation reaction
event in histories. If no futures are passed we omit the R parameter.

The resolve action p↓f : (C,R) models that the object p finishes the computation of f and
resolves the future. If the method has an algebraic data type as its return type, the return
value has C as its outermost constructor and R describes how the futures are passed in the
return value. This corresponds to a return statement in ABS or a resolving event in histories.
If the return type is not an algebraic data type we write p↓f : (⊥, ∅). In examples we omit C
and R if C = ⊥ or R = ∅ for readability.

The fetch action p ↑ f : (C,R) models that the object p reads from the future f . If f is
resolved by a value with an algebraic data type, the value has C as its outermost constructor
and p reads the futures as described by R. If f is resolved by a value which is not typed with
an algebraic data type we write p↑f . This corresponds to a get expression in ABS or a fetch
event in histories. We omit the C and R parameters as described for the resolving action.

The release action Rel(p, f) models that object p releases control until the future f has been
resolved. This corresponds to an await f; statement in ABS or an awaitEv event in histories.

Branching is denoted by p{Gj}j∈J , repetition by G∗ with the meaning that G is repeated
finitly often, concatenation by G1 . G2 and termination by end.
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Repetition does not repeat the exact same type, as this would not be a valid use of futures.

G∗ 6= G . G . . . .

If the repeated type contains a call, the future would be reused in the second iteration. Thus
repetition assumes that every iteration renames all futures consistently: all iterations must be
future-equivalent.

Example 8
Consider a protocol P with objects A,B,C, where A has a list of items and wants to register
them at B. To do so, A repeatedly calls the method reg on B. The return type of reg is an
algebraic data type with two constructors deny, ok, both without parameters. B may decide
to deny a registration and returns deny. In this case A calls C and logs the failure. Otherwise,
B asks A for additional information on the passed item by calling more and returns ok. After
all items have been processed, A terminates the protocol.

The global session to describe this communication is:

0
f0−→ A :start .

A
f−→ B :reg . Rel(A, f0) . B

B
f ′−→ A :more . A↓f ′ . B↑f ′ . B↓f :ok . A↑f

B↓f :deny . A↑f . A
f ′′−−→ C : log . C↓f ′′ . A↑f ′′


∗.A↓f0.end

This example also illustrates the restriction for the communication of choice. The object A
is notified twice about the choice of B: First by receiving a call on more or not, then by the
return value in f ′. The object C is notified once, by receiving a call from A or not. All these
propagations are correct because every process is notified once and behaves the same up to the
moment it receives the notification.

To define projection and semantics of global types we need the following auxiliary structures
and functions. When checking an action, we must be able to look into the prefix of it to check
whether it is using its future correctly. E.g., to check a resolving action A↓f there must be a
calling action before. To identify an action we enumerate the AST and identify an action with
its number. The prefix of an action is the set of all actions which are in the path from the root
to the action, or on a branch underneath this path as the left child of a concatenation but not
under a node resulting from a repetition. The actions inside a repetition are omitted because a
repetition can be repeated zero times. Also well-formed types, which are defined in Section 3.5,
ensure that omitting the repetition does not break well-formedness of the described histories.

Example 9
Consider the following example:

G = 0
f0−→ A :start .

(
A

{
A

f ′−→ B :m . B↓f ′ . A↑f ′

A
f ′′−→ C :m . C↓f ′′ . A↑f ′′

})∗
. A↓f0 . end

Note that A never releases control and in the whole communication only one process of A is
active. The AST of G is depicted in Figure 3.1

The node labelled 2 refers to the action A↑f ′′ and the grayed out nodes are its strict prefix.
The node labelled 1 refers to the action C↓f ′′ and is the last action before A↑f ′′.

Let i be the number of the node 2, then the prefix type is:

0
f0−→ A :start . A

f ′′−→ C :m . C↓f ′′

Note that while the nodes labelled with A and ∗ are part of the strict prefix in the AST, they
are removed in the prefixtype.
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◦

◦

∗

A||

◦

◦ ◦

◦ ◦

1 2

Figure 3.1.: Abstract syntax tree of G

Formally we define the AST as follows:

Definition 28 (Abstract Syntax Tree)
Let G be a global type and T(G) = (V,E,N◦, N∗, (Np||)p∈Ob) its AST, where V are the nodes
corresponding to actions. An edge (v, w) ∈ E describes that v corresponds to a type which
is a subterm of the type of q. As the graph is a tree and the root is known, we regard E as
undirected. The predicate N∗(v) holds for nodes resulting from a ∗ operator, N◦(v) holds for
nodes resulting from a concatenation operator and Np||(v) holds for nodes resulting from a
global choice operator with p as the choosing object.

We identify V with the linear order of natural numbers produced by a DFS and denote with
action(i) the ith visited node. We also write child(i, j) for the number of the jth child of the
node i, parent(i) for the parent of i and subs(i) for the set of all nodes j below i, such that
there is a non-empty path from i to j that does not contain a node which is labelled with N∗.

Definition 29 (Prefix Set)
The pre : N→ P(N) function is used to compute the prefix set of a leaf, i.e. the set of nodes,
which denote actions that must be executed before i.

pre(i) =


{i} ∪ pre(parent(i)) ∪ subs(i+ 1) if N◦(i) ∧ i 6= 0
{i} ∪ pre(parent(i)) if ¬N◦(i) ∧ i 6= 0
{i} if i = 0

The first case is the the parent of i is a node labelled with ◦. In this case the left subtree under
parent(i) must also be added, as the leaf-nodes in this subtree refer to actions which must be
executed before i (or are under a node labelled with ∗ and are thus ignored by subs). In the
first and the second case the parent node and its prefix are also added to the prefix. The last
case is needed to add the root.

The strict prefix is defined as spre(i) = pre(i) \ {i}. The last : P(N) → N function returns
the last simple type in a set of vertices

last(I) = max
{
i ∈ I | ¬(N◦(i) ∨Np||(i) ∨N∗(i))

}
The last(I) function denotes the last action that must be executed before in I. If I is the

prefix set of a node i, then last denotes the last action which must be executed before i. last
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always returns the last action which must be executed in every case, because in the prefix of a
node there is no branching. Branching is not allowed on the left side of a concatenation, and
thus would occur under a repetition node, and these are ignored when computing the prefix.

Analogous to the prefix set, we can define the prefix of a type at position i as the type which
has only the nodes pre(i) \ {i} as its AST.

Definition 30 (Prefix Type)
Let G be a type, T(G) its AST with universe V and i ∈ V a leaf. Let Q be the set of all
non-repetitions nodes in the prefix of action(i):

Q = {j ∈ pre(i) | ¬N∗(j)}

The prefix type of G at i, preType(G, i) is the type such that the AST of preType(G, i) is the
restriction of the AST of G on pre(i):

T(pre(G, i)) = (pre(i) \Q,E′, N ′◦, N ′∗, (N ′p||)p∈Ob)

and all relations C ′ agree with their counterpart in T(G) on pre(i) and the edge relation
bypasses all repetitions:

E′ = {(i, j) | ¬N∗(i) ∧N∗(j) ∧
(
E(i, j) ∨ ∃k. E(i, k) ∧ E(k, j)

)
}

The strict prefix type spreType(G, i) is defined analogously over spre(i) instead of pre(i).

The prefix type of i is the the type that describes the communication that must be executed
in every case before executing the action at i.

To keep track of active futures, we define a function which returns for each position i in the
AST and each object p the active future act(i,p). Every action in the global types corresponds

to actions of the ABS system in the simplified model without delays. E.g. after A
f−→ B, the

object B is active and the active future is f , after B ↓ f the object B is not active, etc. The
active future of p at i is the future whose computing process is active, before the action of the
ith node was executed. If there was no active future, act(i,p) is undefined. Similarly we keep
track which future is suspended, by mapping a future f to a set of pairs (p, f ′) to model that
the computation of the future f ′ in object p is suspended until f is resolved.

Definition 31 (Active and Waiting Futures)
We define the set of active and waiting futures before executing the ith node in a fixed AST
with the following two functions

act : N× Ob⇀ Fut

wait : N× Fut→ P(Ob× Fut)

act(0,p) = ⊥

act(i,p)
i>0

=



⊥ if ∃f ∈ Fut. last(spre(i)) = Rel(p, f)
⊥ if ∃f ∈ Fut. last(spre(i)) = p↓f
f if ∃q ∈ Ob. ∃f ∈ Fut. last(spre(i)) = q

f−→ p
f if ∃q ∈ Ob. ∃f ∈ Fut. last(spre(i)) = q↓f ′ ∧ wait(i, f ′) = {(p, f)}
act(last(spre(i)),p) otherwise

wait(0, f) = ∅
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wait(i, f)
i>0

=


wait(last(spre(i)))(f) ∪ {(p, act(last(spre(i)),p))} if last(spre(i)) = Rel(p, f)
∅ if ∃p ∈ Ob. last(spre(i)) = p↓f
wait(last(spre(i)))(f) otherwise

The first case for the definition of act removes the currently active future if the last action
was a release action. The second case removes the currently active future if the last action
was a resolving action. The third case sets the currently active future to f , if the last action
was a call on f . The forth case sets the currently active future to f , if the last action was a
termination of f ′ and f waited for f ′. This also demands that there is only one reactivated
future. If there are several reactivated futures, the analysis is wrong for all following actions.
However, we ensure that act is only used when there is only one reactivated future. The last
case propagates the currently active future.

The first case in the definition of wait adds a pair, if an object releases control. The second
case removes all pairs, once it is resolved and the third case propagates otherwise.

Additionally we define fresh ⊆ Fut×N as a predicate to check whether a future is fresh. In
a given AST, fresh(f, i) holds iff in the prefix of i the future f never occurs:

fresh(f, i) = ∀j ∈ spre(i). ∀p,q ∈ Ob. action(j) 6= p
f−→ q

The reads function returns those objects which read from a given future in a given global type:

reads(G, f) = {p ∈ Ob | p↑f is a subterm of G ∨ q
f−→ p is a subterm of G}

We do not provide a type system. Instead we regard global types as a proposition about the
histories which a system can produce. Thus we can translate a global type into a regular
expression. All histories which are described by the regular expression, have the events that
correspond to the single actions in the same order as in the global type. I.e. the translated
regular expression ignores concurrency and delays in the network and assumes a synchronous
communication pattern which is coordinated according to the global type.

The formal translation of a global type into a regular expression is given in Section 3.4.

3.2. Local Types

Local types describe the communication within a closed system from the point of view of
a single endpoint. We differ between Object-Local Types which describe all communication
events executed by an object and Method-Local Types which describe all communication events
executed by a single process. Both share the same syntax.

The distinction is necessary, because a single process does not have the information how it is
interleaved with other processes. This information is only available at object-level - object-local
types describe how method-local types relate to each other.

Definition 32 (Local Types)
Let J range over P(N) with |J | > 1, p over Ob, f over Fut, m over method names, C over
constructor names and R over sets of pairs of futures and numbers. The syntax of local types
is defined by

L ::= Put f : (C,R) . L
∣∣ Get f : (C,R) . L

∣∣ p!fm(R) . L
∣∣ p?fm(R) . L

∣∣
Await(f, f ′) . L

∣∣ React(f) . L
∣∣ ⊕{Lj}j∈J ∣∣ &f{Lj}j∈J

∣∣ L∗ . L
∣∣ skip . L

∣∣ end
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The resolve action Put f : (C,R) and the fetching action Get f : (C,R) have the same intuitive
meaning as their global counterparts.

The send action p!fm(R) denotes an asynchronous method call on the method m at the
object p. This corresponds to an invocation event in communication histories.

The receive action p?fm(R) denotes the start of a new process, which computes f by exe-
cuting the method m after a call from p. This corresponds to an invocation reaction event.

The suspend action Await(f, f ′) denotes that the process computing f suspends its execu-
tion until the future f ′ has been resolved. The reactivation action React(f) denotes that the
process computing f continues its execution. This action is needed, because the reactivation
is implicitly encoded by the resolving action of the future which act as the guard. As local
types only describe the view of a single object, this resolving action may not be visible and
the effect of reactivation must be added.

The choice action⊕ denotes that the currently active process actively chooses a branch to
continue the execution of the protocol. The offer action &f denotes that the object or process
reacts on the choice of the process computing f and chooses a branch according to this choice.
In case of a forward choice the currently active process behaves the same in every branch but
new processes may be spawned (if called from f). In case of a backward choice the currently
active process behaves the same in every branch up to the time it reads from f . Afterwards
the branches may differ.

A method-local type describes the execution of a single process, thus it contains only one
receiving action, only one resolving action and no end.

Definition 33 (Method-Local Types)
A local type is method-local for a future f iff

• its first action is p?fm(R) for some p, m, R,

• in every branch the last action is Put f : (C,R) for some C,R,

• it contains no further resolve action or receive action,

• and it contains no end.

If a local type is not method-local, it is object-local.

Method-Local types describe the behavior of a single object. Even if an object-local type
only describes one future, it is not the method-local types of this future. First, the termination
of the session end is not inside any process. Secondly, inside of repetition a future does not
describe one process, but describes multiple: one process for every call. Each such process has
the same communication pattern.

Example 10
Consider the protocol described in Example 8.

0
f0−→ A :start .

A
f−→ B :reg . Rel(A, f0) . B

B
f ′−→ A :more . A↓f ′ . B↑f ′ . B↓f :ok . A↑f

B↓f :deny . A↑f . A
f ′′−−→ C : log . C↓f ′′ . A↑f ′′


∗.A↓f0.end

The object-local type describing the behavior of A is

0?f0start .

(
B!f reg . Await (f0, f) . &f

{
B?f ′more . Put f ′ . React f0 . Get f :ok
React f0 . Get f :deny . C!f ′′ log . Get f ′′

})∗
. Put f0.
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The method-local type of f ′ is
B?f ′more . Put f ′

We use similar operations on the AST to work with local types as with global types.

Definition 34 (Abstract Syntax Tree for Local Types)
Let L be a local type and T(L) = (V,E,N◦, N∗, N&, N⊕) its AST, where the predicates C are
defined analogous to the predicates in ASTs of global types.

We again identify V with the linear order of natural numbers produced by a DFS and denote
with action(i) the action of the ith visited node. The auxiliary functions spre and last are also
defined analogous and we refrain from denoting them with a different name for readability.

Definition 35 (Active Futures for Local Types)
The act function has the same intuition as in the global case, except not needing the object
parameter and is defined as follows. The free variables in the side-conditions are implicitly
quantified with an existential quantifier.

act : N⇀ Fut

act(0) = ⊥

act(i)
i>0

=


⊥ if last(spre(i)) = Await(f, f ′)
⊥ if last(spre(i)) = Put f :R
f if last(spre(i)) = p?fm(R)
f if last(spre(i)) = React(f)
act(last(spre(i))) otherwise

Again, last(spre(i)) is the id of the last action that must be executed before the action at i.
When projecting global to object-local types, not every constraint of the usage of futures

is checked. To check these, especially branching and correct propagation, we define several
auxiliary predicates.

Definition 36 (Knowing Futures)
The known ⊆ Fut×P(Fut)×P(N) predicate models that a future f has access to every future
in a set of futures S in a set of nodes I, i.e. f either received the future on its activating call
or read it from a future with a Get.

known(f, S, I) ⇐⇒ ∀f ′ ∈ S. ∃R ∈ (N× Fut)∗.((
∃j ∈ I. action(j) = q?fm(R) ∧ ∃k ∈ N. (k, f ′) ∈ R

)
∨(

∃j ∈ I. ∃f ′′ ∈ Fut. action(j) = Get f ′′ :R ∧ ∃k. (k, f ′) ∈ R
)
∨(

∃j ∈ I. action(j) = q!f ′m(R)
))

Example 11
Consider the following global types

G1 = 0
f0−→ A :m() . A

f−→ B :m() . B
f ′

−→ C :m() . C↓f ′ . B↓f . A↑f ′ . A↓f0 . end

G2 = 0
f0−→ A :m() . A

f−→ B :m() . A
f ′

−→ C :m() . Rel(C, f) . B↓f . C↓f ′ . A↑f ′ . A↓f0 . end
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Both are not propagating futures correctly.
In G1 the object A reads from f ′ but f ′ is only known to B and B does not communicate
f ′ in its return value. In G2 the object C suspends its process until f is resolved, but f is
only known to A which did not communicate it when calling C.m. The following types are
propagating futures correctly:

G′1 = 0
f0−→ A :m() . A

f−→ B :m() . B
f ′

−→ C :m() . C↓f ′ . B↓f : (⊥, f ′) . A↑f :f ′︸ ︷︷ ︸
propagation

. A↑f ′ . A↓f0.end

G′2 = 0
f0−→ A :m() . A

f−→ B :m() . A
f ′

−→ C :m({0, f})︸ ︷︷ ︸
propagation

. Rel(C, f) . B↓f . C↓f ′ . A↑f ′ . A↓f0.end

In G′1 the object B propagates f ′ back to A correctly. In G2 the object A propagates f
correctly by passing it as a method parameter.

Definition 37 (Distinguishable Branches)
The dist ⊆ P(LT)× N predicate models that every branch in a set {Lj}j∈J is distinguishable
from the others. Let i be the position of the branching in a fixed AST that has {Lj}j∈J as
the branches. For every future it either starts with a call or a resolving action, such that every
call has another callee and every resolving action has another class label.

dist((Lj)j∈J) ⇐⇒
∃J ′, J ′′ ⊆ J. J ′ ∩ J ′′ = ∅ ∧ J ′ ∪ J ′′ = J∧

(∀j ∈ J ′. ∃L′j ∈ LT. Lj = qj!fjmj(Sj) . L′j ∧
∧
i,j∈J ′
i 6=j

(mj 6= mi ∨ qj 6= qi)∧

(∀j ∈ J ′′. ∃L′j ∈ LT. Lj = Put f : (Sj , Nj) . L′j ∧ f = act(child(i, j))) ∧
∧

i,j∈J ′′
i 6=j

Ni 6= Nj)

A branching⊕{Lj}j∈J is distinguishable, if the set J can be partitioned into two parts J ′, J ′′,
such that Lj , j ∈ J ′ are forward choices and Lj , j ∈ J ′′ are backward choices. All branches in
J ′ start with a call action and all branches in J ′′ start with a resolving action. The branches
are distinguishable if every call at the start of a forward choice is to a different method or
object and every call at the start of a backward choice uses a different constructor.

Note that after a forward choice a backward choice can be communicated. This is not
expressed in the dist predicate but is captured in the check for well-formedness in Section 3.5.

Example 12
Consider the following object-local type

0?f0start .B!freg . Await f0, f .&f


B?f ′more . Put f ′ . React f0 . Get f :ok . Put f0.end
React f0 . C!f ′′ log . Get f ′′︸ ︷︷ ︸

wrong

. Get f :deny . Put f0.end


This is not correct because in the second branch the process computing f0 calls C.log before
being notified about the branch choice by reading from f ′′. It is however correct that in
one branch the method more is called, because this is outside of the process reading from f .
Consider the local type

0?f0start .B!freg . Await f0, f .&f


B?f ′more . Put f ′ . React f0 . Get f :ok . Put f0.end
React f0 . Get f :ok . C!f ′′ log . Get f ′′ . Put f0.end
React f0 . Get f :deny . C!f ′′′ log . Get f ′′′ . Put f0.end



34



3. Session Types

This is not correct because there are two branches where B communicates ok: the process
computing f0 behaves differently in these branches despite not knowing which of them was
chosen as the information is only communicated via f and B does not access it.. Note that
object A can distinguish between them, if the process computing f ′ would store the information
that it was called on more. The following type is propagating futures correctly:

0?f0start .B!freg . Await f0, f . &f


B?f ′more . Put f ′ . React f0 . Get f :ok . Put f0.end
React f0 . Get f :ok . Put f0.end
React f0 . Get f :deny . C!f ′′ log . Get f ′′ . Put f0.end


Also the set of constructors needs not be exhaustive, i.e. there may be constructor names
which are not used to communicate choice. We ignore these, as their use is not described in
the protocol. We verify however that they are not used by the method during verification of
the method code.

Additionally, the fresh ⊆ Fut×P(N) predicate models that a future f was not active in the
nodes I. If a future was not active for spre(i), then it is fresh.

fresh(f, I) ⇐⇒ ∀i ∈ I. act(i) 6= f

3.3. Projection

Projection is the procedure to derive the local type of an endpoint on a session type. In ABS,
the notion of an endpoint is twofold: data is sent between processes of different objects. We
use a two-fold projection: First the global type is projected onto an object and the resulting
object-local type describes the behavior of this object within the system. Secondly the object-
local type is projected onto a future and the resulting method-local type describes the behavior
of the process computing this future.

So far, we gave no notion of Well-Formedness for session types. However not every syntacti-
cally correct type is a valid description of an ABS system. We check this during the projection;
a global type is well-formed if every projection is defined.

Additional concepts are needed to define well-formed types and formalize the descriptions
we presented in the last sections.

Actions on futures can not be repeated arbitrarily. For each invocation with a future there
is exactly one invocation reaction and at most one resolving event. We also demand that there
is exactly one resolving event, i.e. the type describes the whole communication and at the end
of the session all processes participating in it have terminated.

A type is self-contained, if it resolves every future which is started in it. Only self-contained
types can be repeated.

Definition 38 (Self-Contained Types)
A global type G is self-contained if

• for every call action within G, there is a corresponding resolving action within G,

• for every resolving action within G, there is a corresponding call action within G,

• it contains no end,

• and each repetition within G is self-contained
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A local type L is self-contained if

• for every reactivation within L, there is a corresponding suspending action within L

• for every suspending action within L, there is a corresponding reactivation within L

• for every receiving action within L, there is a corresponding resolving action within L

• for every resolving action within L, there is a corresponding receiving action within L

• it contains no end,

• and each repetition within L is self-contained

Example 13
The following type is not self-contained, because inside the repetition there is no corresponding
call for the resolving action

A
f−→ B . (B↓f)∗

The following type is self-contained

(A
f−→ B . B↓f)∗

A self-contained type resolves exactly his own futures. We only allow self-contained types
to be repeated. This way it is ensured that every constraint on futures that demands that
something happens exactly once (one invocation, once invocation reaction, etc.) is adhered to.

3.3.1. Projecting Global to Object-Local Types

We define the projection of a global type G to the local type of an object p as a partial
function G�p,i where i denotes that G is the ith node in a fixed, given AST and allows to use
information from the act and wait functions of the prefix of a type.

The projection is defined with a case distinction on the form of G. If there is no case whose
side-condition is fulfilled, the projection is undefined. Some of the side-conditions are needed
to model that futures are used correctly, but some violations are covered in the projection
to method-local types. I.e. if the global type does not use futures correctly, G �p,0 may
be defined despite not using futures correctly. This is not problematic as only the method-
local types are checked against ABS code. The checks on this level ensure correct usage of
futures across multiple objects, i.e. that communication between objects does not lead to ill-
formed communication histories. The side-conditions while projecting the object-local type to
method-local types ensure the correct usage of future within a single object.

The projection G �p,i is defined in Figure 3.2, using the wait(i, f) function to model which
futures are waiting for f , the fresh(f, S) predicate to model that a future f is fresh and the
reads(G, f) function to model that f is read in G. The function are defined in Section 3.1.

• The call action is mapped to a receive action on the callee side and a sending action on
the caller side.

• A resolving action is mapped to a putting action of the corresponding object, to a reac-
tivation for every waiting object and skip for any other object.
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• A read action is mapped to a getting action of the corresponding object and skip for any
other object. The side-condition ensures that a future is resolved before the future is
read and only futures passed during resolving is read. This must be checked at a global
level, because resolving and reading takes place in different objects.

• A release action is mapped to a suspending action of the corresponding object and skip
for any other object. The side-condition ensures that the releasing object does not have
any other future waiting for the same resolving. This is needed because we can not reason
about the scheduling of ABS and must be sure that the correct process is reactivated.

• Branching is mapped to choice for the active side and offer for every side that either
receives one of the calls publishing the choice or reads from the active future. For any
other object there must be a unique local type that is equivalent in every branch, i.e.
an object that does not receive the choice behaves the same. If objects were allowed to
behave differently, it must be verified that they behave correctly in a given situation.
We can identify the situation and the knowledge of a process only by its future accesses.
If a process has the same information in two position in a session types and behaves
differently, we can not ensure that the correct choice how to behave is made.

• Termination is mapped to termination. The condition that every future has been re-
solved, i.e. all objects are inactive and no future is still suspended, is not checked during
projection but as an extra condition for well-formedness.

• Repetition and concatenation are propagated down.

r
f−→ q :m(R)�p,i =


r!fm(R) if p = r ∧ fresh(f, i)
q?fm(R) if p = q ∧ fresh(f, i)
skip if p 6= q ∧ p 6= r ∧ fresh(f, i)

q↓f : (C,R)�p,i =


Put f : (C,R) if q = p
React(f ′) if q 6= p ∧ (p, f ′) ∈ wait(i, f)
skip otherwise

q↑f : (C,R)�p,i =

{
Get f : (C,R) if q = p ∧ ∃j ∈ spre(i). action(j) = r↓f : (C,R′) ∧R ⊆ R′
skip if ∃j ∈ spre(i). action(j) = r↓f : (C ′, R′) ∧ C ′ � C

Rel(q, f)�p,i =

{
Await(act(i,q), f) if q = p∧ 6 ∃f ′ ∈ Fut.(q, f ′) ∈ wait(i, f)
skip if 6 ∃f ′ ∈ Fut.(q, f ′) ∈ wait(i, f)

q{Gj}j∈J �p,i =


⊕{Gj �O,child(i,j)}j∈J if p = q

&f{Gj �O,child(i,j)}j∈J if p 6= q ∧ ∃j ∈ J. p ∈ reads(Gj , f) ∧ f = act(i,q)

G if ∀j ∈ J. Gj �p,child(i,j)= G

end�p,i = end

(G1 . G2)�p,i = G1 �p,child(i,1) . G2 �p,child(i,2)

G∗ �p,i = (G�p,child(i,1))
∗

Figure 3.2.: Projection of Global to Object-Local Types
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We write G�p for G�p,0.

Example 14
Consider the global type from Example 16:

Q = 0
f0−→ A :start .

(
A

{
A

f ′−→ B :m . B↓f ′ . A↑f ′

A
f ′′−→ C :m . C↓f ′′ . A↑f ′′

})∗
. A↓f0 . end

Its projection on A is

Q�A= 0?f0start .

(
⊕
{

B!f ′m . Get f ′

C!f ′′m . Get f ′′

})∗
. Put f0 . end

The projection on B is
Q�B=

(
A?f ′m . Put f ′

)∗
. end

The projection on C is
Q�C=

(
A?f ′′m . Put f ′′

)∗
. end

Note the repetition in the local types of B and C. This repetition is outside of any process
and not visible from the view of a single process. It is however visible from the view of the
whole object as being repeatedly called. The termination is also outside of each process.

3.3.2. Projecting Object-Local to Method-Local Types

We define the projection of a local type L to the local type of a future f as a partial function
L�f,i where i denotes that L is the ith node and allows to use information from the act function
of the prefix of a type.

The projection is defined with a case distinction on the form of L. If there is no case whose
side-condition is fulfilled, the projection is undefined. Let p be a fixed object. The definition
of L�f,i is given in Figure 3.3

• A sending action is mapped to itself for the active future and to skip for any other. The
side-conditions ensure that only futures which are known to the active future are sent,
the new future is fresh and there is an active future.

• A receiving action is mapped to itself for the received future and to skip for any other.
The side-conditions ensure that there is no active future.

• A resolving action is mapped to itself for the active future and to skip for any other. The
side-conditions ensure that only futures which are known to the active future are sent
and there is an active future.

• A fetching action is mapped to itself for the active future and to skip for any other. The
side-conditions ensure that the active future knows the future it reads from and there is
an active future.

• A suspending action is mapped to itself for the active future and to skip for any other.
The side-conditions ensure that the active future knows the future it waits for and there
is an active future.
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q!fm(R)�f ′,i =

{
q!fm(R) if act(i) = f = f ′ ∧ fresh(f, spre(i)) ∧ known

(
act(i), futs(R), spre(i)

)
skip if act(i) 6= f ∧ fresh(f, spre(i)) ∧ act(i) 6= ⊥

q?f ′m(R)�f,i =

{
q?fm(R) if f ′ = f ∧ ¬fresh(f, spre(i)) ∧ act(i) = ⊥
skip if f ′ 6= f ∧ act(i) = ⊥

Put f ′ : (C,R)�f,i =

{
Put f ′ : (C,R) if act(i) = f = f ′ ∧ known

(
act(i), futs(R), spre(i)

)
skip if act(i) 6= f ∧ act(i) 6= ⊥

Get f ′ : (C,R)�f,i =

{
Get f ′ : (C,R) if act(i) = f ∧ known

(
act(i), {f}, spre(i)

)
skip if act(i) 6= f ∧ act(i) 6= ⊥

Await(f ′, f ′′)�f,i =

{
Await(f ′, f ′′) if act(i) = f = f ′ ∧ known

(
act(i), {f ′′}, spre(i)

)
skip if act(i) 6= f ′ ∧ act(i) 6= ⊥

⊕{Lj}j∈J �f,i =



⊕{Lj �f,child(i,j)}j∈J if act(i) = f ∧ dist((Lj)j∈J)
L if act(i) 6= f ∧ ¬fresh(f, subs(i+ j)) ∧ dist((Lj)j∈J)∧(

(∀j ∈ J. Lj �f,child(i,j)= L)∨
(∃k ∈ J Lk �f,child(i,k)= L
∧ ∀j ∈ J. j 6= k → Lj �f,child(i,j)= skip)

)
skip if act(i) 6= f ∧ fresh(f, subs(i+ j)) ∧ dist((Lj)j∈J)

&f ′{Lj}j∈J �f,i =



L if (∀j ∈ J. Lj �f,child(i,j)= L)∨
(∃k ∈ J Lk �f,child(i,k)= L
∧ ∀j ∈ J. j 6= k → Lj �f,child(i,j)= skip)

&f ′{Lj �f,child(i,j)}j∈J if
(
∃C1, . . . , C|J| ∈ Con.(

(∀j ∈ J. Lj �f,child(i,j)= Get f ′ :Cj . L′j)∨
(∀j ∈ J. Lj �f,child(i,j)= React(f) . Get f ′ :Cj . L′j)

)
∧

∀j, k ∈ J. Cj = Ck → Lj �f,child(i,j)≡Fut Lk �f,child(i,k)
)

L∗ �f,i =

{
(L�f,i+1)∗ if ¬fresh(f, spre(i)) ∧ L is closed
L�f,i+1 if fresh(f, spre(i)) ∧ L is closed

React(f)�f ′,i = skip if act(i) = ⊥ ∧ action
(

max{j | j ∈ spre(i) ∧ act(j, p) = f}
)

= Await(f, f ′′)

end�f,i = skip

(L1 . L2)�f,i = L1 �f,child(i,2) . L2 �f,child(i,2)
skip�f,i = skip

Figure 3.3.: Projection of Object-Local to Method-Local Types
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• A reactivation action is mapped to skip for any future, because in the setting of partial
correctness the next action after a suspending action will always be a reactivation inside
a method-local type. The side-condition ensures that there is no active future and the
last action of the reactivated future was a suspending action.

• A choice action is mapped

– to a choice for the active future,

– to the unique L that it is mapped to in every branch for suspended futures,

– to the unique L that it is mapped to for futures which are fresh but used in exactly
one of the branches and

– to skip for any other future.

The side-condition ensures that the branches are distinguishable.

• A offer action is mapped

– to the unique L that it is mapped to in every branch for any future which does not
read from the future carrying the branch choice

– to an offer action for any future that does

The side-condition ensures that the branches are distinguishable and each future is
mapped to the same type up to the point where it reads the choice.

• Repetition is mapped to a repetition for futures which are active or suspended, and to the
simple projection for any other futures, because the repetition is being repeated called
from their view.

• Termination is always mapped to skip because it is not visible

• Concatenation and the empty type are handled analogous to their global counterpart.

Example 15
Consider the following type:

0
f0−→ A :start .

A
f−→ B :reg .Rel(A, f0).B

 B
f ′−→ A :more . A↓f ′ . B↑f ′ . B↓f :ok . A↑f

B↓f :deny . A↑f . A
f ′′−−→ C : log . C↓f ′′ . A↑f ′′


∗.A↓f0.end

The object-local type of A is:

0?f0start .

(
B!f reg . Await (f0, f) . &f

{
B?f ′more . Put f ′ . React(f0) . Get f :ok
React(f0) . Get f :deny . C!f ′′ log . Get f ′′

})∗
. Put f0 . end

The method-local type of start :

0?f0start .

(
B!f reg . Await (f0, f) . &f

{
React(f0) . Get f :ok
React(f0) . Get f :deny . C!f ′′ log . Get f ′′

})∗
. Put f0

The object-local type of C:
(A?f ′′ log . Put f ′′)∗ . end

The method-local type of log
A?f ′′ log . Put f ′′

Note that on the object-level, the repeated call of log is visible to C. It is not visible to a single
process computing log. Also the object-local type of C does not contain a branching, because
during projection, all but one branch are equal to skip.
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3.4. Translation of Types to Regular Expressions

As we regard session types as propositions over sequences, we translate types into regular
expressions. The language of such an expression is the set of histories realized by a system
under simplistic assumptions like having no delay.

The transition to the real concurrency model of ABS is made by allowing permutations: it
is not checked whether the history a system realized is described by the regular expression of a
type; instead it is checked whether it is some permutation of such a history. Additionally the
local history of all objects must be the same in the realized and the described history - from
a local point of view, the simple and the real system are not distinguishable.

We are also able to formalize what it means that a type only describes possible executions
of systems: all histories described by its translation into a regular expression are well-formed.

3.4.1. Translation of Global Types to Regular Expressions

Definition 39 (Translation of Global Types to Regular Expressions)
The translation t(C,R) translates a constructor C and a set of pairs of futures and positions
R into the corresponding expression. If C = ⊥ then t(⊥, R) = null, otherwise for C 6= ⊥:

t(C,R) = C(j1, . . . , jar(C)) with jn =

{
f if (n, f) ∈ R
null otherwise

The translation t(m,R) translates a set of pairs of futures and position into the corresponding
list of parameters for a method m.

t(m,R) = [j1, . . . , jar(m)] with jn =

{
f if (n, f) ∈ R
null otherwise

The global type translator τ : GT → P(Ev∗) maps a global type to a regular expression.
Let SG : Fut → Met be the mapping from futures to the corresponding method in G, i.e.

SG(f) = m if p
f−→ q :m occurs somewhere in G. We assume a fixed SG function.

Then τ is defined by:

τ(p
f−→ q :m(R)) =

{ [
invEv(p,q, f,m, t(m,R)), invREv(p,q, f,m, t(m,R))

]
if p 6= 0[

invREv(p,q, f,m, t(m,R))
]

if p = 0

τ(p↓f : (C,R)) =

{ [
futEv(p, f, SG(f), t(C,R))

]
if C is not an Exception[

throwEv(p, f, SG(f), t(C,R))
]

if C is an Exception

τ(q↑f : (C,R)) =

{ [
futREv(q, f, t(C,R))

]
if C is not an Exception[

throwREv(q, f, t(C,R))
]

if C is an Exception

τ(Rel(p, f)) = [awaitEv(p, act(i,p), f)] where i is the position of this action in T(G)

τ(G1 . G2) = τ(G1) ◦ τ(G2)

τ(p{Gj}j∈J) = τ(Gi) + τ(p{Gj}j∈J\{i}) with i ∈ J
τ(G∗) = τ(G)∗

τ(end) = ε
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Example 16
Consider the following global type:

Q = 0
f0−→ A :start .

(
A

{
A

f ′−→ B :m . B↓f ′ . A↑f ′

A
f ′′−→ C :m . C↓f ′′ . A↑f ′′

})∗
. A↓f0 . end

Its translation is

τ(Q) =
[
invREv(0,A, f0, start , ε)

]
◦([

invEv(A,B, f ′,m, ε), invREv(A,B, f ′,m, ε)
]
◦[

futEv(B, f ′,m,null), futREv(A, f ′,null)
]

+[
invEv(A,C, f ′′,m, ε), invREv(A,C, f ′′,m, ε)

]
◦[

futEv(C, f ′′,m,null), futREv(A, f ′′,null)
])∗

◦
[
futEv(A, f0, start ,null)

]
Histories capture more information about method parameters and return values than session

types can express. To compare histories generated by a system and histories described by a
session type, we erase the additional parameters.

Definition 40 (Expression-Cleaned Histories)
Each event that carries data, has an expr parameter for the carried data. Let h be a history.
The expression-cleaned history h̃ results from replacing every expr parameter with the encoding
of future propagation. If expr has an algebraic data type and its outermost constructor is C,
it is replaced by a value whose outermost constructor is C and every non-future argument is
replaced by null. If expr is a list of method parameters this is done for each element. If no
element contains a future the list is replaced by ε, if a single element does not contain any
future, then this parameter is replaced by null. Otherwise expr is replaced by null.

To incorporate concurrency, a global history is captured by a type if it is the permutation
of a history described by the translation.

Definition 41 (Capturing Histories)
A well-formed global history h is captured by global type G, if h̃ is future-equivalent to a
permutation of a history described by τ(G):

h :G ⇐⇒ ∃h′, h′′ ∈ Ev∗. h̃ ≡Fut h
′ ∧ π(h′, h′′) ∧ h′′ ∈ L(τ(G)) ∧ ∀p ∈ Ob. h�p= h′′ �p

3.4.2. Translation of Local Types into Regular Expressions

Analogous to global types we define a translation to regular expressions and semantics by
permutations.

Definition 42 (Translation of Local Types into Regular Expressions)
The translation τp : LT × (Fut → Met) → P(Ev∗) maps a local type for p to a regular
expression. Let SL : Fut→ Met be the mapping from futures to the corresponding method in
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L, i.e. SL(f) = m if p?fm(R) occurs somewhere in L. Then τp is defined by:

τp(q?fm(R)) = invREv(q,p, f,m, t(m,R))
]

τp(q!fm(R)) = invEv(p,q, f,m, t(m,R))

τp(Put f : (C,R)) =

{ [
futEv(p, f, SL(f), t(C,R))

]
if C is not an Exception[

throwEv(p, f, SL(f), t(C,R))
]

if C is an Exception

τp(Get f : (C,R)) =

{ [
futREv(p, f, t(C,R))

]
if C is not an Exception[

throwREv(p, f, t(C,R))
]

if C is an Exception

τp(Await(f, f ′)) = [awaitEv(p, f, f ′)]

τp(L1 . L2) = τp(L1) ◦ τp(L2)

τp(⊕{Lj}j∈J) =

{
τp(Li) + τp(⊕{Lj}j∈J\{i}) with i ∈ J if |J | > 1

τp(Li) if J = {i}

τp(&f{Lj}j∈J) =

{
τp(Li) + τp(&f{Lj}j∈J\{i}) with i ∈ J if |J | > 1

τp(Li) if J = {i}
τp(L∗) = τp(L)∗

τp(skip) = ε

τp(React(f)) = ε

τp(end) = ε

The translation of a type L is τp(L).

Definition 43 (Capturing Local Histories)
A well-formed local history h for an object p is captured with a local type L, if h̃ is future-
equivalent to a history described by τp(L):

h :L ⇐⇒ ∃h′ ∈ Ev∗. h̃ ≡Fut h
′ ∧ h′ ∈ L(τp(L))

Permutations are not needed here, because on the object and process level we model the
communication without delays and asynchronicity.

Definition 44 (Capturing Method-Local Types)
Let L be a mthod-local type and m a method. The method m ist caputered by L if every
history that m can realize is captured by L.

3.5. Well-Formedness

A global type is well-formed if it is a valid description of an ABS system, i.e. its translation
into a regular expression only describes well-formed histories and at the end of an execution
the system has terminated. In order to verify this, we impose the additional restriction that
every method (which can be called several times in a type) must have the same method-local
type for each future, that results from a call on this method. The main part to verify a global
type, is to check whether the projection on all futures occurring in it is defined.

Not every global type captures global histories. for example, when futures are reused there
is no permutation that results in a well-formed history. We do not give an analysis on global
types whether a global type is well-formed. Instead we check the restriction while projecting
to local types.

43



3. Session Types

Definition 45 (Well-Formed Global-Types)
Let G be a global type. G is well-formed if

1. it has the form 0
f−→ p :m(∅) . G′ for some G′, f,p,m

2. for every object q that occurs within G and every future f that occurs for q within G
the projection is defined

∀q ∈ Ob. ∀f ∈ Fut. G�q�f 6= ⊥

3. every branch ends in end

4. the type that results from replacing every end action with skip is self-contained

5. for every method m within G all calls on m are projected on types which are pairwise
future-equivalent

∀m ∈ Met. ∀p,q ∈ Ob.(
∃j, k ∈ N. ∃f, f ′ ∈ Fut.(
action(j) = p

f−→ q :m ∧ action(k) = p′
f ′−→ q′ :m

)
→ G�q�f≡Fut G�q′�f ′

)
In this case we denote with G �m the method-local type of m: G �m= G �q�f for the
according q and some f .

Condition 2 ensures that the type describes only valid runs, conditions 3 and 4 ensure that
the described communication is fully resolved and condition 5 ensures that every method call
describes the same communication. Condition 1 is needed to ensure a clean start, i.e. only one
object is active.

Theorem 1 (Type Well-Formedness implies History Well-Formedness)
If a global type G is well-formed, then each history in L(τ(G)) is well-formed.

The proof is given in the appendix.
We do not give a notion of well-formedness of local types, because we are only able to reason

about local types if we know the global type it was projected from. We justify this in the next
section.

A global type describes a system with a fixed number of objects. We say that a system fits
a global type if it has the correct classes and objects, and its objects are initialized.

Definition 46 (Fitting System)

Let S = (
−→
Sys,
−−→
Sch, h) be an ABS system and A the ABS data type system of S. Let G = 0

f−→
q :m(∅) . G′ be a well-formed global type, Ob the set of objects in G and methods(q) the set
of methods called on p in G.

The system S fits G if the following holds:

1. For each q ∈ Ob, there is a class Clq in A, and q is the name of an object in im(
−→
Sys).

2. For each q ∈ Ob, there is a field flq in every class Clr, r 6= q with σ(flq) = q

The first point connects the objects of global types to their counterpart in data types. The
second point models that all objects already have pointers to each other.

A system S initially fits G if additionally the following holds:
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1. The only active object is p with the history [invREv(0,P, f,m, ε))] for some expression
list e.

2. The global history is h = [invREv(0,P, f,m, ε))]

3. Every other history is empty.

The first point models that the system is initialized correctly. The others model that the
history is initialized only with the first event.
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4.1. Admissibility

Session types allow us to locally check program code to ensure global guarantees. For our
system, this means that if every method is captured by its method-local type, then the system
is captured by its global type. If a system is captured by its global type G, this especially means
that no object can distinguish between the histories in τ(G) and its well-formed permutations.
However the guarantee that all methods are captured by their types, is not strong enough to
guarantee this for objects: on object-level the method-local types can be interleaved differently
than specified in the global type. No process sees a difference between the actual history and
the specified history, but an object does.

A global type is admissible if it additionally guarantees that the processes can be interleaved
in only one way: A global type G is admissible if for every object p in every history captured
by G all permutations are not distinguishable from the view of p. I.e., the local history of p
is the same in every permutation.

To model that a type describes a local behavior independent from the permutations resulting
from concurrency and delays, we extend linear types from [18]. We regard two behaviors of an
object to be equal, if the order in which the single processes are executed and interleaved are
the same.

Formally we define:

Definition 47 (Local-Order Preservation)
Let h be a global history and p an object. A permutation h′ of h is local-order preserving for
p if the history of their projection to p is equal

h�p= h′ �p

Example 17
The following history h is not local-order preserving. The history h′ is a permutation of h,
both h and h′ are well-formed, but the local history of A differs: The events for executing f
and f ′ are swapped.

h =
[
invREv(0,B, f0,m0, ε), invEv(B,A, f,m, ε), invREv(B,A, f,m, ε), futEv(A, f,m, ε)︸ ︷︷ ︸

f

]
◦

[
invEv(B,A, f ′,m2, ε), invREv(B,A, f ′,m2, ε), futEv(A, f ′,m2, ε)︸ ︷︷ ︸

f ′

, futEv(B, f0,m0, ε)
]

h�A=
[
invREv(B,A, f,m, ε), futEv(A, f,m, ε), invREv(B,A, f ′,m2, ε), futEv(A, f ′,m2, ε)

]
h′ =

[
invREv(0,B, f0,m0, ε), invEv(B,A, f,m, ε), invEv(B,A, f ′,m2, ε)

]
◦[

invREv(B,A, f ′,m2, ε), futEv(A, f ′,m2, ε)︸ ︷︷ ︸
f ′

, invREv(B,A, f,m, ε), futEv(A, f,m, ε)︸ ︷︷ ︸
f

, futEv(B, f0,m0, ε)
]

h′ �A=
[
invREv(B,A, f ′,m2, ε), futEv(A, f ′,m2, ε), invREv(B,A, f,m, ε), futEv(A, f,m, ε)

]
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A well-formed global type G is admissible, if every permutation of every described history
that is well-formed is also local-order preserving: This means that the object can not distinguish
whether the system behaves according to the simple model without asynchronous calls and
delays or includes concurrency.

Definition 48 (Admissible Types)
A well-formed global type G is admissible, if every well-formed permutation of every described
history is local-order preserving:

∀h, h′ ∈ Ev∗.
((
h ∈ τ(G) ∧ wellFormed(h′) ∧ π(h, h′)

)
→ ∀p ∈ Ob. h�p= h′ �p

)
Example 18
The following type is not admissible, because it describes the history h from Example 17:

0
f0−→ B :m0 . B

f−→ A :m . A↓f . B
f ′−→ A :m2 . A↓f ′ . B↓f0 . end

A type with unbounded repetition describes an infinite language - its translation into a
regular expression describes an infinite language. It is not possible to check all histories for
local-order preservation by computing all their permutations. We show that it suffices to
check a derived type describing a finite language to decide admissibility. We use star-height,
analogous to star-height of regular expressions, as a measure for types.

Definition 49
The star-height sh(G) of a global type G is the maximal number of nodes labelled with ∗ on
any branch in the AST of G.

Given a global type with unbounded repetitions, we can construct two global types with
one unbounded repetition less, by replacing one unbounded repetition once with k-bounded
repetition with k = 0 and once with k = 2.

Checking whether a permutation h′ of h is local-order preserving is checking whether there
are two events i, j with i < j which are issued by the same objects that are permuted to
positions i′, j′ with j′ < i′. One must check whether this can be the case for a position i before
the repetition and j resulting from inside the repetition. But as the subhistory resulting from
the repetition is a sequence of future-equivalent copies, it suffices to check whether there is
such a j in the first iteration.

Checking only the first repetition (which would correspond to k = 1) does cover all cases.
Additionally it must be checked that there are no such i, j for two arbitrary subsequences
resulting from the repetition. But as all such subsequences are future-equivalent, it suffices to
check the first and second one. This leads us to bound one repetition with k = 2.

Additionally, in the type with k = 0 one can check whether two events are swappable if the
repetition is not executed. The following example illustrates why this case is necessary:

Example 19
The following type is not admissible for k = 0, but admissible for any k > 0.

0
f0−→ B :m0 . B

f−→ A :m . A↓f .
(
B↑f

)k
. B

f ′−→ A :m . A↓f ′ . B↓f0 . end

The following type is only admissible for k = 0, but not admissible for any k > 0.

0
f0−→ A :m0 .

(
A

f−→ B :m . B↓f . A
f ′−→ B :m2 . B↓f ′

)k
. A↓f0 . end

This is the only case where the unsynchronized calls on B are not executed.
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The formal description of replacing unbounded repetition:

Definition 50
A type G is more bounded than G′, G �0,2 G′ if G is equal to G′ after one unbounded
repetition in G′ is replaced by some bounded repetition with k = 0 or k = 2 or G = G′. We
denote the transitive closure with G �∗0,2 G′.

The unrolling u0,2(G) is the set of all types which are maximally bound, i.e. more bounded
than G and have no further unbounded repetition.

u0,2(G) = {G′ | G′ �∗0,2 G ∧ sh(G′) = 0}

This produces an exponential amount of types, as |u0,2(G)| ∈ O(2|# of ∗ operators in G|). But
all of them describe finite languages.

Lemma 1 (Decidability of Admissibility)
A well-formed global type G is not admissible iff some type in u0,2(G) is not admissible.

The proof is in the appendix.
When reasoning about branching types, it is easier to reason about the branches alone.

Definition 51 (Linear Types)
A global type G or a local type L is linear if all branching operators within are repetitions.

There are n! permutations to check for a history of length n. Instead of computing all
permutations and checking whether they are well-formed and local order-preserving, we extend
the analysis of [18] and use causality graphs to check a linear type in polynomial time for
admissibility.

Definition 52 (Causality Graph)
Let h ∈ Ev∗ be a history, its causality graph C(h) = (V,E) is defined as follows. All free
variables are implicitly quantified by an existential quantifier with the scope of the surrounding
conjunct.

V =
{

1, . . . , |h|
}
, (4.1)

∀i, j ∈ V. E(i, j) ⇐⇒ h[i] = invEv(p,q, f,m, e) ∧ h[j] = invREv(p,q, f,m, e)∨ (4.2)

h[i] = futEv(p, f,m, ε) ∧ h[j] = futREv(q, f, ε)∨ (4.3)

h[i] = throwEv(p, f,m, ε) ∧ h[j] = throwREv(q, f, ε)∨ (4.4)(
∃p ∈ Ob. h[i]�p 6= ε ∧ h[j]�p 6= ε ∧ act(i,p) = act(j,p)

)
∨ (4.5)

∃f, f ′, f ′′ ∈ Fut. ∃p,q ∈ Ob. p 6= q ∧ act(i,p) = f ∧ h[j]�p 6= ε∧ (4.6)

last(h[1..j − 1]�q) = awaitEv(q, f, f ′′)∧ (4.7)(
h[i] = futEv(p, f,m, ε) ∨ h[i] = throwEv(p, f,m, ε)

)
(4.8)

The disjuncts in (4.2), (4.3) and (4.4) link events according to the well-formedness of histo-
ries. The disjunct in (4.5) links events from the same active future. The disjunct in (4.8) links
resolving events to the first events from the future they reactivate.

The causality graph C(G) is the disjoint union of the causality graphs of all histories for all
types in its unrolling. Let H(G) = {h | h ∈ τ(G) ∧G ∈ u0,2(G)}

C(G) = {
⋃
·

(V,E)=C(h)
h∈H(G)

V,
⋃
·

(V,E)=C(h)
h∈H(G)

E}
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The causality graph encodes causality; if there is a path between two nodes then either the
first causes the second (e.g., the first is sending and the second is receiving a call) or they
happen in this order in a single process and the first thus must be executed first.

Lemma 2 (Causality)
Let G be a well-formed linear global type which contains no unbounded repetition and C(G)
its causality graph. Let I(p) be the set of indices, where τ(G)[i]�p 6= ε for an object p.

A well-formed global type G is admissible iff for each p ∈ Ob for each i, j ∈ I(p), i < j,
where i, j are in the same connected component and i < j, there is a path from i to j in
C(G) = (VG, EG).

The proof is in the appendix. A single-source-all-paths search in a DAG has O(|V | + |E|)
computation time [11]. There are at most |V | elements of I(p) for which such a search has to
be executed. Thus we can bound for one history the computation time with O(n2). However
there are possibly exponentially many histories in u0,2(G).

Example 20
Consider the following global type

U = 0
f0−→ A :m() . A

f−→ B :m2() . Rel(A, f) . B
f ′−→ A :m() . A↓f ′ . B↑f ′ . B↓f . A↓f0

Its causality graph is

f0

f ′

f

A

B

? ! Aw ↓

? ↓

? ! ↑ ↓

The nodes are line-wise aligned by the active future. E.g. the Aw node results from the awaitEv
in the translation of U. It is easy to see that all events for A are pair-wise connected. Now
consider the following global type, where B does not read from f ′

U′ = 0
f0−→ A :m() . A

f−→ B :m2() . Rel(A, f) . B
f ′−→ A :m() . A↓f ′ . B↓f . A↓f0

Its causality graph is

f0

f ′

f

A

B

? ! Aw ↓

? ↓

? ! ↓

Now there is no path between the two gray nodes, thus the type is not admissible.
The type is not admissible, because the single history in L(τ(U′)) has a permutation which

is well-formed but has swapped the order of the events corresponding to the gray nodes: This
is because the computation of f ′ can start after the computation of f0 terminates. In the first
example this is not possible, because f0 is reactivated after f ′ has been computed, now the
invocation reaction f ′ can be delayed and starts after f0 has been reactivated.
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4.2. Translation of Method-Local Types into ABSDL

To verify the method-local types, we use the symbolic execution of KeY to generate the set of
symbolic histories which a method can realize. We construct a formula that holds if a symbolic
history is described by a method-local type. It is not possible to use established translations
of regular expressions into formulas [6], because

• symbolic histories describe a set of histories and

• the type describes the history of a process, but the symbolic execution describes the
history of the object.

We deal with the first point by bounding elements of the events with existential quantifiers.
These can be instantiated with terms to match the generated symbolic history. The second
point is dealt with by marking the events of the history which are not issued by the process.
4 We translate linear repetition-free types to terms and combine the translations of branching
and repeating types with disjunctions and the pattern predicate. The objects in the events are
mapped to self and fields, the futures are mapped to variables and the passed parameters and
return values are described by additional formulas.

The translation of linear repetition-free types is straightforward as every action maps to one
event, and every event maps to one function symbol.

Definition 53 (Translation of Linear Repetition-Free Types)
Let L be a linear repetition-free method-local type for a method m in p. The translation T (L)
of L is a term of type Seq and a formula describing how futures are passed. C(Exception)
is the set of constructors of Exception. The predicated issuedBy , outer and paramAt are
introduced in Section 2.2: issuedBy(s, f) holds is all events in the sequence s are issued by the
process computing f , outer(v, C) holds if the outermost constructor of the value v is C and
paramAt(v, f, i) holds if f the ith parameter of v.

T :LT→ Trm× Frm

T (L) = (tL, ψL)

T (q!fm(R)) =
(
[invEv(self , self .flq, f,m, v)],

∧
(i,f ′)∈R

v[i] = f ′)
)

T (q?fm(R)) =
(
[invREv(q, self , f,m, v)],

∧
(i,f ′)∈R

v[i] = f ′)
)

T (Put f : (C,R)) =

{ (
[futEv(self , f,m, v)], outer(v, C) ∧

∧
(i,f ′)∈R paramAt(v, f ′, i)

)
if C 6∈ C(Exception)(

[throwEv(self , f,m, v)], outer(v, C) ∧
∧

(i,f ′)∈R paramAt(v, f ′, i)
)

if C ∈ C(Exception)

T (Get f : (C,R)) =

{ (
[futREv(self , f, v)], outer(v, C) ∧

∧
(i,f ′)∈R paramAt(v, f ′, i)

)
if C 6∈ C(Exception)(

[throwREv(self , f, v)], outer(v, C) ∧
∧

(i,f ′)∈R paramAt(v, f ′, i)
)

if C ∈ C(Exception)

T (Await(f, f ′)) =
(
[awaitEv(self , f, f ′)] ◦ s,¬issuedBy(s, f)

)
T (L1 . L2) =

(
tL1
◦ tL2

, ψL1
∧ ψL2

)
where v, s, q are variables of Any ,Seq〈Ev〉 and Ob type. We assume that every variable that
is introduced in this way is unique in the translation: when computing T (L1 . L2), if such a
variable occurs in tL1 and tL2 , we assume it is renamed consistently in tL2 .
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The constants for method names m in T (Put f : (C,R)) and T (Get f : (C,R)) are taken from
the corresponding p?fm(R) (resp. p!fm(R)) event.

The additional sequence and the formula of T (Await(f, f ′)) are necessary because the sym-
bolic execution keeps track of the history on object-level. Thus after executing an Await
statement, a sequence is appended to history . To incorporate this sequence, a variable is
added after the Await event and marked as not issued by this process. Otherwise the sequence
could be instantiated with events from the process in question.

Example 21
Consider the following type

L = A?f0 :m() . B!f :m2() . Await(f0, f) . Get f :C1 . Put f0 :C2({(1, f)})

T (L) =
([

invREv(A, self , f0,m, ex ), invEv(self , self .flB, f,m2, ex 1), awaitEv(self , f0, f)
]
◦ s◦[

futREv(self , f, ex 2), futEv(self, f0,m, ex 3)
]
,

¬issuedBy(s, f0) ∧ outer(ex 2, C1) ∧ outer(ex 3, C2) ∧ paramAt(ex 3, f, 1)
)

The term of the translation contains several free variables: the parameter lists, the futures,
the event sequence during the suspension and the caller object. These variables are bound by
existential quantifiers in the final invariant.

To deal with repetition and branching inside repetitions we disassemble the type into linear
segments by replacing repetitions by variables and splitting branches into linear types. First
we extend local types with variables.

Definition 54 (Local Types with Variables)
Let V be a set of variable symbols. The set of local types with variables LT+ is a superset of
the set of local types, defined by the following extension of the grammar for local types:

L ::= . . .
∣∣ t

The translation of a type variable t is a logical variable st of sequence type.

T (t) = (st, true)

Intuitively a labelled local type describes an equality, i.e. that t can be replaced by L. Type
variables allow us to formulate the relation between branches by formulas.

To disassemble a type, we use two operations: Flattening removes one repetition from a
linear type and replaces it with a type variable. Debranching splits a non-linear type into
branches.

Definition 55 (Debranching)
Let (t,L) be a labelled non-linear method-local type. The debranching of L is the set of all
linear types obtained by splitting the first branching in L. As L is non-linear, it has the form
L′.&f {Lj}j∈J or L′.⊕{Lj}j∈J . We assume that J is an interval in N: J = {1, 2, . . . , n}, n > 1.
Then the debranching of (t,L) is

D :V × LT+ × N→
(
V × P(V )

)
× P(V × LT+)

D(t,L, i) =
(
(t, {ti, . . . , ti+|J |−1}), {(ti+k−1,L

′ . Lk)}k∈J
)
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The second component of the result is the set of all branches, labelled with a fresh type
variable. The first component is the original variable and the set of newly introduced variables.
The i parameter is needed to ensure that every type variable identifies a type.

Example 22
Consider the following type

(t0,L) = A?fm({(1, f ′)}) . &f ′


Get f ′ :ok . Put f
Get f ′ :deny . (B!f ′′m1 . Get f

′′)∗ . Put f

Get f ′ :PatternFailure . ⊕
{

Put f :C1

Put f :C2

}


Its debranching is

D(t0,L, 1) =
(

(t0, {t1, t2, t3}),{
(t1,A?fm({(1, f ′)}) . Get f ′ :ok . Put f),

(t2,A?fm({(1, f ′)}) . Get f ′ :deny . (B!f ′′m1 . Get f
′′)∗ . Put f),

(t3,A?fm({(1, f ′)}) . Get f ′ :PatternFailure . ⊕
{

Put f :C1

Put f :C2

}
)})

We use the following operation to replace repetitions in a local type and receive a set of
labelled local types which describes the same set of histories.

Definition 56 (Flattening)
Let n ∈ N be a number and (t,L) be a method local type such that

L = L0 . (L′0)∗ . L1 . (L′1)∗ . . . . . (L′n−1)∗ . Ln

Where all Li are repetition free. Let (t,L) be a method local type and n ∈ N the number of
repetitions operators in L. The flattening F(t,L, i) is a set of labelled local types and a set of
type variables.

F :V × LT+ × N→ P(V )× P(V × LT+)

F(t,L, i) ={(ti,L0 . ti+1 . L1 . ti+2 . . . . ti+n−1 . Ln), (ti+k,L
′
k)k<n}, {ti+1, . . . , ti+n−}

The first component is the set of introduced variables. The second component is the set of
repeated segments, labelled with new type variables and the input type with removed variables.

We apply these operation recursively to obtain

• A set of labelled linear repetition free types

• A set of type variables marked for repetition

• An assignment from variables to sets of variables, which describes inner debranchings

The algorithm manages a set W of labelled types, which still must be disassembled. Any
of these types is picked and if it is not linear, the type is split into branches. The branches
are labelled with new variables and the B function maps the original variable to the set of the
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variables for the branches. If the type is linear but not repetition free, it is flattened. The
removed parts are added to W and their variables are added to R. If the type is linear and
repetition free it is added to the result mapping T .

In the end, T maps all occuring variables to linear repetition-free segments and R contains
all variables whose type is repeated. B maps all variables to the set of variables which label
types resulting from debranching.

Definition 57 (Disassembly of Method-Local types)
Let L be a linear method-local type for a method m. The disassembly of L is computed by
the following algorithm

input linear method-local type (t,L)

output T : V ⇀ LT+, R ∈ P(V ), B : V ⇀ P(V )

W = {(t0,L)}\\set of possibly non-linear types

R = ∅\\set of variables, whose type is inside a repetition

∀v. B(v) = ⊥\\maps variables to the branches of their type

∀v. T (v) = ⊥\\maps variables to linear repetition-free types

i = 1

while(W 6= ∅)do

pick any (t,L′) ∈W
W = W \ {(t,L′)}\\remove it from working set

if L′ is not linear

(T ′, B′) = D(t,L′, i)\\debranch if not linear

B = B[t 7→ B′]

W = W ∪ T ′

i = i+ |T ′|
elseif L′ is not repetition-free

(T ′, R′) = F(t,L′, i)\\flatten if not repetition-free

R = R ∪R′

W = W ∪ T ′

i = i+ |T ′|
else

T = T [t 7→ L′]\\add to result

od

return (T,R,B)

We write T(L) = (T,R,B) for the result of the algorithm.

Example 23
Consider the type

A?fm .

(
&

{
C!f ′′m3 . (Get f ′′)∗

B!f ′m2

})∗
. Put f
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Its disassembly T(L) is

T = {(t0,A?fm . t1 . Put f),

(t2,C!f ′′m3 . t4),

(t3,B!f ′m2),

(t4,Get f
′′)}

R = {t1, t4}
B = {(t1, {t2, t3})}

Note that the original type is labelled with t0 in the initialization of the algorithm and the
outermost type is still labelled with t0.

With the disassembly we can construct a formula, that holds if a sequence of events is
captured by a type, if all events that are not issued by this process are removed.

Definition 58 (Translation)
Let (it)t∈V be a family of logical variables of Int type. Let L be a linear method-local type
and T(L) = (T,R,B) its disassembly. Its translation is

χL =
∧
t∈R

T (t) 6=⊥

(
pattern(t, tT (t), it) ∧ ψT (t)

)
∧

∧
t∈R

T (t)=⊥

(
pattern(t, B(t), it)

)
∧

∧
t∈dom(T )

t 6∈R

(
t = tT (t) ∧ ψT (t)

)
The first disjunct encodes the repetition marked in R, if the repeated type variable labels a

linear repetition-free type. This is the case if a repetition contains no branching. The second
disjunct encodes the repetition marked in R, if the repeated type variable t describes a branch.
The branches are recorded in B(t). The last disjunct encodes the remaining types.

We quantify over all free variables but t0, additionally we demand that all futures are not
equal to each other.

Definition 59
Let L be a linear method-local type and χL its ABSDL translation. Let {T1, . . . , Tm} be the set
of types such there is at least one free variable of type Fut〈T 〉 in χL and let {T ′1, . . . , T ′k} \ {t0}
be the set of types T such there is at least one free variable of type T in ΨL and T has not the
form Fut〈T ′〉.

Let FT = {f1, . . . , fn} be the set of free logical variables of type Fut〈T 〉 and VT = {v1, . . . , vm}
the set of free variable of other type T where T has not the form Fut〈T ′〉.

ϕL(t0) =

∃f1
1 , . . . , f

1
n ∈ Fut〈T1〉. . . . ∃fm1 , . . . , fmn ∈ Fut〈Tm〉.

∃v1
1, . . . , v

1
n ∈ T ′1. . . . ∃vk1 , . . . , vkn ∈ T ′k. ∧

χL ∧
∧

f,f ′∈
⋃
T∈TF

FT

f 6=f ′

f 6= f ′
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The translation of a non-linear method-local type L with debranching (T,B) = D(t0,L, 1)
is

ϕL(t0) =
∨

L′∈T
ϕL′(t0)

Example 24
Consider the type from example 23

L = A?fm .

(
&

{
C!f ′′m3 . (Get f ′′)∗

B!f ′m2

})
. Put f

Its disassembly T(L) is

T = {(t0,A?fm . t1 . Put f),

(t2,C!f ′′m3 . t4),

(t3,B!f ′m2),

(t4,Get f
′′)}

R = {t1, t4}
B = {(t1, {t2, t3})}

Its translation is

ϕL =∃i1, i4 ∈ Int. ∃f, f1, f2 ∈ Fut. ∃t1, t2, t3, t4 ∈ Seq. ∃e1, e2, e3, e4, e5 ∈ Any.

f 6= f1 ∧ f1 6= f2 ∧ f1 6= f2∧
t0 =

[
invREv(A, self , f,m, e1)

]
◦ t1 ◦

[
futEv(self , f,m, e2)

]
∧

t2 =
[
invEv(self , self .flB, f1,m2, e3)

]
◦ t4∧

t3 =
[
invEv(self , self .flC, f2,m3, e4)

]
∧

pattern(t1, {t2, t3}, i1) ∧ pattern(t4, {
[
futREv(self , f2, e5)

]
}, i4)

Let L be the method-local type for some method m. The formula ϕL(t) describes the
sequence for the variable t. However, an invariant must hold after the execution of every
method. Thus we define the following formula as an invariant:

ΦL(t) = lastMethod(t,m)→ ϕL(t)

Where lastMethod(t,m) encodes that the last event was a resolving or throwing action:

lastMethod(t,m) =

∃Any e; ∃Fut〈Any〉 f ;

t[seqLength(t)− 1]
.
= futEv(self ,m, f, e) ∨ t[seqLength(t)− 1]

.
= throwEv(self ,m, f, e)

The formula ΦL(t) evaluates to true in every branch of every proof that is an invariant, but
the ones for m.

The KeY-ABS prover requires additional information from the global type to produce a
proof for that ΦL is an invariant. The reason is that we can derive further information about
a method-local type from the global type: When reading from a future, the global type guar-
antees what constructors can by communicated on top-level and whether an exception can be
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thrown or not. This can not be encoded into the logic and the proof splits for every possible
outermost constructor.

Thus we extend the original type with branches for every possible constructor. These
branches are needed to close the proof tree branches which are not possible when the global
type is known and every other party follows its part of the protocol.

Definition 60
Let L be a method-local type. The F function maps futures to a set of constructors. C ∈ F (f)
holds if the constructor C is used as a label for f in L.

F (f) = {C | futREv(p, f,m,C(e)) ∈ τ(L) ∨ throwREv(O, f,m,C(e)) ∈ τ(L) for some p,m, e}

Now C(f) is the set of unused constructors:

C(f) =
(
C(Exception) ∪ C(ret(SL(f)))

)
\ F (f)

The constructor-complete type L̃ results from adding dummy branches for unused constructors
of each read future. First every type of the form Get f :C . L′ that occurs in L, such that f
does not appear as the parameter of an offering in L is replaced by

&f{Get f :C . L′}

Then every offering is completed, i.e., a branch consisting of a reading action and a fresh
variable is added for each unused constructor. Every type of the form

&f{Gj}j∈J

is extended with a new index set K ⊇ J and fresh logical variables tk, k ∈ K of Seq〈Ev〉 type
to &f{Gk}k∈K , where

Gk =

{
Gj if k ∈ J
Get f :C . tk if C ∈ C(f)

The result is denoted L̃.

Example 25
Consider the method-local type

L = A?fm{(1, f ′)} . Get f ′ :ok . Put f

In an ABS data type system where

C(ret(SL(f))) = {ok, deny}
C(Exception) = {PatternFailure}

Then

L̂ = A?fm{(1, f ′)} . &′f


Get f ′ :ok . Put f
Get f ′ :deny . t′

Get f ′ :PatternFailure . t′′


Note that the type variables are translated into free sequence variables in ϕL̂, i.e. the proof
closes independently of what m executes after entering such a branch.
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Finally we can give the main theorem, that if all methods are captured by their method-local
type, then the system is captured by the global type. Recall from Definition 46 that a system
initially fits if it has the classes and methods used in G, is initialized and every object has a
pointer on every other object.

Theorem 2 (Fidelity)
Let S0 be an ABS system and G an admissable global type, such that S0 initially fits to G. If
for every method m of S0 there is a proof that Φ

G̃�m
is an invariant, then S0 is captured by G.

We do not give a guarantee what happens if an object receives calls in the wrong order.
Languages or system with typestate[28] guarantee that the specified order is enforced on callee
side, but ABS does not offer such a mechanism and we refrain from generating boilerplate code
for the ABS classes.

The KeY-ABS prover is only able to deal with partial correctness: It can only guarantee
that if a methods terminates then it is captured by its method-local type. It is not able to
show that it will always terminate. In this setting, we guarantee deadlock freedom.

Corollary 1 (Dead-Lock-Freedom)
Let S be a system and G a global type. If S is captured by G and every process always
terminates, then S is deadlock-free.

Proof. Given Theorem 2, it suffices to show that at no node i of the AST of G a dead-locked
state can be described. If there would be such a reachable state, at the corresponding node i
of the AST of G, for all objects p it would hold that act(i,p) = ⊥ but there is some f with
wait(i, f) 6= ∅. If this is the last action end, G is not well-formed because the projection of end
requires for any object that ∀f ∈ Fut. wait(i, f) = ∅. If it is not the case, then the next action
can not be projected because for every action for some object it is required that act(i,p) 6= ⊥.
The projection for this object would be not defined, thus G is not well-formed.

4.3. Scheduling with Session Automata

The admissibility check we introduce in Section 4.1 ensures that the system behaves according
to the global type for every possible scheduler. This demands that the communication pattern
itself enforces a the order of process activations and reactivations.

An alternative is to construct a constraint on the scheduler from the object type – if the
scheduler of each object behaves according to this constraint, then Theorem 2 holds also for
non-admissible but well-formed global types. We use session automata to represent scheduler
policies and object types. Session automata are finite state automata which work on words
over infinite alphabets, are equipped with a finite memory to store read values and can take
the values stored in the memory into account when firing a transition.

When the object is idle, the object’s scheduler inputs the processes which can be (re- ) acti-
vated to the session automaton. If a transition labeled with the corresponding (re- ) activation
event can fire in the automaton, the object (re- ) activates this process. If there are several
processes which can run such a transition, the scheduler randomly selects one of these pro-
cesses. This mechanism is a variant of typestate [28]: the scheduler actively guides the object
instead of simply observing the order of method calls.

It does not suffice to consider classical NFAs with the alphabet of all method names.
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Example 26
Consider the following type

p?fm . Rel(f, f ′′) . p?f ′m . Rel(f ′, f ′′) . React(f) . L

Both processes started are computing the same method and are waiting for the same future.
To schedule the correct reactivation (i.e. the first one) the scheduler must keep track of the
futures.

Session automata [5] are a subclass of register automata [22]; particularly, they require the
freshness of symbols copied into the store. We only store futures when reading a process
activation, so session automata satisfies our needs. We define k-register session automata as
follows:

Definition 61 (k-Register Session Automata)
Let Σ be a finite set of labels, D be an infinite set of data equipped with equality, and k ∈ N.
A k-Register Session Automaton is a tuple (Q, q0,∆, F ) where

• Q is the finite set of states,

• q0 ∈ Q is the initial state,

• ∆ ⊆
(
Q×Q′

)
∪
(
Q× Σ× 2{1,...,k} × {1, . . . , k} ×Q

)
is the transition relation,

• F ⊆ Q is the set of accepting states.

Data words are words over an alphabet Σ × D. A data word automata has a data store,
which can save k data values. A transition fires for a letter (a, d) ∈ Σ×D if a set of equalities
of the form d = ri are satisfied, where ri refers to the ith stored data value. After a transition
fires, d will be stored in the data store.

The store has one register for each future in the type. While there are only finitely many
futures in the type, the futures inside repetitions are only placeholders: they correspond to
multiple futures in the history. Let fposL : Fut → N be an injective function which maps
every future in the type L to a number, such that im(fposL) is an interval (1..k) in N. The
upon reading a data value with future f , it is stored in fposL(f). When the future must be
reactivated, the automaton can look up fposL(f) to see whether it is the correct one. As
all repetition are self-contained, it is safe to overwrite futures which are used only inside a
repetition in each iteration - it is guaranteed that they may not be used again.

Let σ : {1, . . . , k} → D be the store. We define (q, a, I, l, q′) as a transition in automaton
from state q to state q′ upon reading (a, d) if σ[i] = d for all i ∈ I and updates σ[l] to d, and
define (q, q′) as an ε-transition that switches the state without reading the next letter.

Definition 62 (Runs of Session Automata)
A run of a k-register session automaton A = (Q, q0,∆, F ) on a data word

w = (a1, d1), . . . , (ak, dk) ∈ (Σ×D)k

is a sequence s ∈
(
Q × N × ({1, . . . , k} → D)

)∗
. An element (q, j, σ) of the sequence denotes

that A is at state q with store σ and reads (aj , dj). To be a run of A, the sequence s =
(q0, j0, σ0), . . . , (qn, jn, σn) must satisfy the following for all i ≤ n:(

(qi, qi+1) ∈ ∆ ∧ (ji = ji+1) ∧ (σi = σi+1)
)
∨(

(qi, (aji , dji), I, l, qi+1) ∈ ∆ ∧ (ji+1 = ji + 1) ∧ (σi+1 = σi[l 7→ dji ]) ∧ ∀l ∈ I. σi(l) = dji

)
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Now we fix Σ to be Σ =
(
({start} × Met) ∪ {react}

)
and D = Fut, where start labels

process activation and react labels process reactivation.

The connection to the rules in Section 2.1 on page 16 is that in a system (
−→
Sys,
−−→
Sch, h) the

scheduler is a pair (A, (q, σ)) with A = (Q, q0,∆, F ) and

−−→
Sch(O)(a, d) = (A, (q′, σ′)) ⇐⇒ (q, (a, d), I, l, q′) ∈ ∆ ∧ (σ′ = σ[l 7→ d]) ∧ ∀i ∈ I. σ(i) = d

The scheduler advances the automaton on every scheduling decision instead of inputting the
whole word at once.

Given an object type, we build a session automata from a given object type:

Definition 63
Let L be an object type. Let k be number of futures in L. The k-register session automaton
A(L) is defined inductively as follows:

• The receiving action L = p?fm is mapped to a 2-state automaton which reads (start,m)
and stores the future f in the pos(f)-th register on its sole transition:

A(L) =
(
{q1, q2}, q1, {(q1, (start,m), ∅, fposL(f), q2), {q2}

)
• The reactivation action L = React(f) is mapped to a 2-state automaton which reads
react and tests for equality with the fpos(f)-th register on its sole transition.

A(L)
(
{q1, q2}, q1, {(q1, (react), {fpos(f)}, fposL(f), q2), {q2}

)
• Every other action is mapped to the 1-state automaton which accepts only ε

A(L) =
(
{q1}, q1, ∅, {q1}

)
• Concatenation, branching, and repetition using the standard construction for concate-

nation, union, and repetition for NFAs. We assume that the fpos function used in the
construction of the subautomata is the one of the whole type.

When a process is activated, the automaton will store the process’s corresponding future;
and when a process is reactivated, the automaton compares the process’s corresponding future
with the specified register. As all repetitions in types projected from a global type are self-
contained, after the repetition is done, the futures used in the repetition are resolved and thus
the automaton can overwrite it safely. The following example shows how a session automaton
works based on an object type:

Example 27
Consider the following type:(

p?fm1 . Await(f, f
′) . p?f ′′m3 . Put f

′′ . React(f) . Put f
)∗

. end

The generated 2-register session automaton is:

q1start q2 q3 q4
(start,m1)

d 7→ r0

(start,m3)

d 7→ r1

(react)

d = r0

(start,m1)

d 7→ r0
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Theorem 3 (Fidelity)
Let S0 be an ABS system and G an global type, such that S0 initially fits to G. If for every
method m of S0 there is a proof that Φ

G̃�m
is an invariant and the scheduler of each object p

accepts the same language as A(G�p), then S0 is captured by G.

It is decidable [5] if two session automata accept the same language.
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Related Work

Multi-party session types for asynchronous communication have been introduced in [18], ex-
ception handling has been studied e.g by [9, 8, 10]. while session types for object-oriented
programs has been proposed by several authors with several aims.

The Mool language [17, 7] also projects to method insteads of objects. However, it uses
non-uniform objects, i.e. the order of method-calls is programmed as part of the class. This is
an encoding of typestate and keeps track of the current state of the global type from the point
of view of the object. Our session types are not depending on typestate or scheduling: the
ordering of method-calls is handled by projecting to the object first and only as a second step
to methods. The typestate approach makes it possible that a verified class has the specified
order of method-calls independent of the global type. The verification of the method-local
types only guarantees this if projected from an admissible global type. The Moose language
[14] does not rely on typestate and also projects on methods, but is channel-based.

Both languages have in common that their session types are channel based and verified with
a type system and not with a theorem prover. We do not compare the precision of these
approaches, but suppose that the symbolic execution of KeY is able to be more precise, at the
possible cost of losing full automatization.

For several other mainstream language like Java [20, 19], Haskell [26] or C [24] a type system
was developed which relies on the usage of a specific library for channels. Methods are type
checked with respect to correct usage of this library, i.e. the correct calls to send and receive
methods. This can not deal with the usage of other means of communication, while session
types designed for a language capture all communication.

Future Work

Towards Method Contracts for ABS Method-local session types are verified as class-invariants,
despite only reasoning about a single method. The generated formulas ϕL can be seen as the
post conditions of method-contracts. The additional branches to capture non-specified values
in futures are similar to pre-conditions.

The ψ-calculus adds ’ensures’ and ’requires’ clauses to the π-calculus. This would allow us to
remove the current restrictions concerning the heap, as changes of the heap could be expressed
as ensures and requires clauses.

Session types for such an extension and the treatment of session types as contracts have
been investigated by e.g. [3, 25, 23].

We assume that similar work can be done for Session Types for ABS, using some established
elements from the JavaDL version of the KeY prover [2]. The global type would be encoded
as a pre- and post-conditions for the method and its release points, enhancing the precision of
the prover.
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Example 28
Consider the global type of Example 20 on page 49.

U = 0
f0−→ A :m() . A

f−→ B :m2() . Rel(A, f) . B
f ′−→ A :m1() . A↓f ′ . B↑f ′ . B↓f . A↓f0

Consider the case that the method A.m1 does not alter the state. When executing according
to G, the Method A.m can assume after its reactivation that the heap did not change, because
only a pure method is executed in between. Thus when symbolically executing A.m it is not
necessary to lose information by anonymizing over the heap.

Towards Composition Our approach is only able to describe the communication in a system
from a global view with a fixed, finite number of endpoints.

Many systems, especially those motivated by web services do not describe a global scenario
but the local behavior of one endpoint, e.g. BitTorrent [1]. Similarly ABS implementations
were done with respect to those local behavior descriptions [27]. Global behavior is ensured by
checking whether the local types are compatible, e.g. in the binary setting a check for duality
is carried out [29]. A notion of compatibility for multi-party type based on communicating
automata has been established in [12, 13].

One line of future work would be to establish a concept of comparability for object-local
types for ABS based on [12, 13]. In this work we used automata over infinite alphabets to
describe scheduling inside objects. We suppose that communicating automata for infinite
alphabets [4, 5] can also model single ABS processes. To adapt the approach of [12], one needs
to develop the correct notion of communication between such automata.

Recent case studies [16] for ABS have already carried out compositional reasoning for ABS
invariants for arbitrary many endpoints. We hope that a composition of object-local types
could be a step towards automatization of such analysis.
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A.1. Proofs

For Theorem 1

If a global type G is well-formed, then each history in L(τ(G)) is well-formed.

Proof. We prove that if there is an ill-formed h ∈ τ(G), then G is not well-formed. As every
history is captured by a single branch of G, w.l.o.g. we assume that G is linear.

We have the following cases for h:

1. There is a position i such that

h[i] = invEv(O,O′, f,m, e)

and there is a position j < i with

h[j] = invEv(O′′,O′′′, f,m′, e′)

I.e. the future is not fresh. In this case G must have the form

G1 . O
f−→ O′ . G2 . O′′

f−→ O′′′ . G3

In this case G cannot be well-formed as G �O′′ is undefined because fresh(f, k) will not

hold at the node k of the AST corresponding to O′′
f−→ O′′′.

2. There is a position i such that

h[i] = invREv(O,O′, f,m, e)

but there is no position j < i with

h[j] = invEv(O,O′, f,m, e)

I.e. the process starts without being invoked. This can not be the case, as if invREv(O,O′, f,m, e)

is in the history, then G must have the form G1 . O
f−→ O′ . G2 and

τ(O
f−→ O′) = [invEv(O,O′, f,m, e), invREv(O,O′, f,m, e′)]

. Thus h 6∈ τ(G).

3. There is a position i such that

h[i] = invREv(O,O′, f,m, e)
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and a position j < i with
h[j] = invEv(O,O′, f,m, e)

but there is a position k with i < k < j such that h[k] = invREv(O,O′, f,m, e). I.e.
the process starts twice. This is not possible, because if there are two positions with the
event invREv(O,O′, f,m, e), then G must have the form

G1 . O
f−→ O′ . G2 . O

f−→ O′ . G3

Thus the future is not fresh and G is not well-formed as in case 1.

4. There is a position i such that

h[i] = futEv(O, f,m, e)

but there is no position j < i with

h[j] = invREv(O′,O, f,m, e′)

I.e. the process terminates without being started. In this case G must have the form

G1 . O↓f . G2 and G1 does not contain O
f−→ O′. Then G is not well-formed because

G �O�f is undefined at O ↓ f , because if G1 does not contain O
f−→ O′, f can never be

active.

5. There is a position i such that

h[i] = futEv(O, f,m, e)

and a position j < i with

h[j] = futEv(O, f,m, e′) ∨ h[j] = throwEv(O, f,m, e′)

I.e. the process is terminated twice. In this case G must have the form

G1 . O↓f . G2 . O↓f . G3

. The G is not well-formed, because after O ↓ f . G2 the future f can not be active
anymore and thus G�O�f is undefined at the second O↓f .

6. The last two cases are analogous for h[i] = throwEv(O, f,m, e) and h[i] = awaitEv(O, f, f ′).

7. There is a position i such that

h[i] = futREv(O, f, e)

but there is no position j < i with

h[j] = futEv(O, f,m, e′)

In this case G must have the form G1 . O↑f . G2 and G1 does not contain O↓f . Then
G is not well-formed, as this is explicitly checked when computing G�O

8. The above case it analogous for h[i] = throwREv(O, f, e).

This concludes the proof.
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For Lemma 1

A well-formed global type G is not admissible, iff some type in u0,2(G) is not
admissible.

Proof. • The ”only if” direction follows directly from⋃
G′∈u0,2(G)

L(τ(G′)) ⊆ L(τ(G))

If there is a well-formed h in some unrolling of G in u0,2(G), that has a non-local-order
preserving permutation, then this h is also in L(τ(G)).

• For the other direction, consider the following induction on sh(G)

– Induction Base sh(G) = 0:

In this case u0,2(G) = {G}.
– Induction Step sh(G) = k + 1

In this case G has the form G1 . (G2)∗ . G3 for some G1,G2,G3 with sh(G1) =
sh(G2) = sh(G3) = k

Let G′ ∈ u0,2(G) be a type, such that there is a h ∈ L(τ(G′)) that has a non-local-
order preserving permutation. The history h must have the form h = h1 ◦ h2 ◦ h3

with h1 ∈ L(τ(G1)), h2 ∈ L(τ(G∗2)) and h3 ∈ L(τ(G3)).

Any axiom of well-formedness does not hold for a history h, only if there are i, j <
|h| with i < j such that h[i] breaks some conditions imposed by h[j]. Thus a
permutation h′ of h can only be non-local-order preserving if it mapped h[i] to some
h′[i′] and h[j] to some h′[j′] with j′ < i′.

We have to show that if there is such a h and a permutation h′ in L(τ(G)), then
there is one for some element of u0,2(G). We make a case distinction on the position
of i and j.

∗ Case i and j are both in h1

In this case, we can construct a non-local-order preserving permutation h′1 of
h1 such that h′1 ◦ h2 ◦ h3 is a non-local-order preserving permutation of h by
induction hypothesis. Now as G2 is self-contained, h1 ◦h3 is also a well-formed
history in L(τ(G)) and thus h′1 ◦h3 is a non-local-order preserving permutation
of it. The history h1 ◦ h3 is described byG1 . (G2)0 . G3 and this type is in
u0,2(G).

h1 ◦ h3 ∈ L(τ(G1 . (G2)0 . G3))

G1 . (G2)0 . G3 ∈ u0,2(G)

∗ Case i and j are both in h3

Analogous to the above case.

∗ Case i and j are both in h2

h2 = g1 ◦ · · · ◦ gl is a l-fold repetition for some g1, . . . , gl which are all pair-wise
future-equivalent. Here we have to distinguish two cases
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· i and j are in the same gn subsequence. This case is analogous to the two
above cases.

· i and j are in different subsequences gn, gm, n < m < l As the subsequences
are all pair-wise future-equivalent, if we can find such a pair i, j for some
n,m, then we can such pair for any n,m, especially for n = 1 and m = 2.
I.e. h2 = g1 ◦ g2. Then

h ∈ L(τ(G1 . (G2)2 . G3)) ∈ u0,2(G)

∗ Case i is in h1 and j is in h2

In this case h2 = g1 ◦ · · · ◦ gl is a l-fold repetition for some g1, . . . , gl which are
all pair-wise future-equivalent. Let j be in some gn. I.e. the change of order of
h[i] and h[j] breaks well-formedness for some axiom. As all subsequences are
pair-wise future-equivalent and result from a a self-contained type, we can find
such a h[j] in every gn, n < l, especially for g1 I.e. h2 = g1 ◦ g2. Now with
h = h1 ◦ g1 ◦ g2 ◦ h3:

h ∈ L(τ(G1 . (G2)2 . G3)) ∈ u0,2(G)

G1 . (G2)2 . G3 ∈ u0,2(G)

∗ Case i is in h2 and j is in h3

Analogous to the above case.

∗ Case i is in h1 and j is in h3

Es shown in Example 19, there are two sub cases:

∗ h ∈ L(τ(G1 . (G2)0 . G3)): I.e. the change of order can only happen if the
repetition is not executed. This holds because G1 . (G2)0 . G3 ∈ u0,2(G)

∗ h ∈ L(τ(G1 . (G2)n . G3)), for some n > 0 If some position in h3 can be
permuted before some position h1 but the break of well-formedness occurs in-
dependent of anything in h2, then there is some h′′ ∈ L(τ(G1 . (G2)2 . G3))
which has a non-local-order preserving permutation.

For Lemma 2

Let G be a well-formed linear global type which contains no unbounded repetition
and C(G) its causality graph. Let I(P ) be the set of indices where τ(G)[i] �P 6= ε
for an object P .

If for each P for each i, j ∈ I(P ), i < j, where i, j are in the same connected
component, there is a path from i to j in C(G) = (VG, EG).

∀P ∈ Ob. ∀i, j ∈ I(P ). i < j → EG(i, j)

Then G is admissible.

Proof.
Let h be the translation of G, and O ∈ Ob any object. It suffices to show that if there is a
path p from i to j for i, j ∈ I(O), and if h[i] and h[j] are swapped then the resulting history
h′ is either not well-formed or h�O 6= h′ �O.

The proof is by induction on the length of the path between i and j
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Induction Base length = 1: Case distinction why this edge is in the graph: We have the
following cases why this edge is in the graph, by Definition 52:

• Condition 4.2 can not be violated, because if i, j ∈ I(O), both events are issued by the
same object and self-call do not give rise to events.

• By condition 4.3: h[i] = futEv(P, f,m, ε) ∧ h[j] = futREv(Q, f, ε) The swapping of a
resolving and the corresponding fetching event does not result in a well-formed history.

• By condition 4.4: h[i] = throwEv(P, f,m, ε)∧h[j] = throwREv(Q, f, ε) The swapping of a
throwing and the corresponding catching event does not result in a well-formed history.

• By condition 4.5: h[i] and h[j] are issued by the same object. In this case swapping them
would break the condition h�O= h′ �O.

• By condition 4.8: h[i] = futEv(P, f,m, ε) ∨ h[i] = throwEv(P, f,m, ε) and h[j] is the first
event after a reactivation, triggered by h[i]. As i, j ∈ I(O), both events are issued by the
same object and swapping them would break the condition h�O= h′ �O.

Induction Step length > 1: There is a k with i < k < j with two cases

1. There is a path from i to k and an edge from k to j.

2. There is an edge from i to k and a path from k to j

In both cases, we can not reorder k before i and after j by induction hypothesis. The additional
edge forbids the swapping of i and k, resp. k and j. We make a case distinction why the edge
is added to the graph to show that we can also not swap i and j.

• Conditions 4.3, 4.4 and 4.5 are as in the induction base. If it is not possible to swap i
after k, it is also not possible to swap i for any position bigger than k, especially j.

• By condition 4.2: h[k] = invEv(P,Q, f,m, e)∧h[j] = invREv(P,Q, f,m, e) (or vice versa).
The swapping of a invocation and the corresponding invocation reaction event does not
result in a well-formed history. If it is not possible to swap i after k, it is also not possible
to swap i for any position bigger than k, especially j.

• By condition 4.8: h[k] = futEv(P, f,m, ε)∨ h[k] = throwEv(P, f,m, ε) and h[j] is the first
event after a reactivation, triggered by h[k] (or v.v.). Obviously h[i] and h[j] can still not
be swapped due to being issued by the same object (but possibly different processes).
The difference to previous cases is that it is perfectly fine to swap h[k] and h[j], because
they are from different objects.

Now, if for all pairs i, j ∈ I(O) with i < j there is a path, no swapping in h �O can occur
and thus G is admissible.

Auxiliary Lemmas

To prove the fidelity we need two auxiliary lemmas.
First, we need to show that the translation T (L) of a linear repetition-free well-formed

method-local type L into an ABSDL term and an ABSDL formula encodes τ(L) correctly.
Recall that valC,β is the evaluation function of ABSDL that maps formulas to truth values and
terms to domain elements. The function β is the assignment of logical variables that maps
variables to domain elements of fitting type.
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Lemma 3 (Correctness of T (L) = (tL, ψL))
Let L be a linear repetition-free method-local type. The translation T (L) encodes L correctly:

valC,β(t
.
= tL ∧ ψL) = tt→ β(t) ∈ L(τ(L))

Proof. The proof is by induction on the structure of L. We abstain from explicitly giving
the case distinction, as the interpretation I maps every function symbol for an event to the
corresponding event (and propagates the arguments).

Secondly, we need to show that the translation of a well-formed method-local type L into
an ABSDL formula ϕL(v) with free variable v encodes τ(L) correctly, i.e. if ϕL(v) holds then
v must be evaluated to a an element of L(τ(L))).

Lemma 4 (Correctness of ϕL)
Let G be a well-formed global type and L = G�m for some method m. If valC,β(ϕL(v)) holds,
then valC,β(v) ∈ L(τ(L))).

Proof. The formula has the form ϕL(v) =
∨

L′∈T ϕL′(v) for some linear L′, which all have the
same star-height. We fix one L′ such that valC,β(ϕL′(v)) holds.

The only free variable in ϕL′(v) is v, so we can assume a β′ such that valC,β′(χL′) holds with
valC,β′(fi) 6= valC,β′(fj) for every futures fi, fj occurring in L′. Induction over the star-height
of L.

• Induction Base sh(L) = 0:

Now as L′ is repetition-free and linear, its disassembly (see Definition 57 is

T(L′) = (T,R,B)

T = {(v,L′)}
R = ∅

dom(B) = ∅

Thus
χL′ = v

.
= tL′ ∧ ψL′

and by Lemma 3 follows that if v
.
= tL′ ∧ ψL′ holds in some C, β′, then valC,β′(v) ∈

L(τ(L))).

• Induction Step sh(L) = k + 1.

As sh(L) > 0, we can assume the type L has the form

L = L1 . (L2)∗ . L3

for some L1,L2,L3 with sh(L1) = sh(L2) = sh(L3) ≤ k.

The proof also holds if more than one type with star-height k is repeated, i.e. if L has
the form L1 . (L2)∗ . L3 . (L4)∗ . L5 . . . with sh(Li) ≤ k.

We make a case distinction whether L2 is linear
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– L2 is linear.

Every history h ∈ L(τ(L)) must have the form h1 ◦ h2 ◦ h3 Now its disassembly is

T(L) = (T,R,B)

T = T ′[t2 7→ L′2]

R = R1 ∪R2 ∪R3 ∪ {t2}

for some B,R1, R2, R3, T
′ with B(t2) = ∅, where L′2 is the flattening of L2. The

encoding formula has the following form:

χL = χL1 ∧ χL3 ∧ pattern(t2, tL′2 , i) ∧ χL′2

Where χL′2
is a conjunction of ψL′2

and formulas describing the repetition removed
from L2.

By induction hypothesis, if χL1 and χL′2
hold, then the prefixes are encoded correctly

valC,β(v) = h1 ◦ h2 ◦ h3

h1 ∈ L(τ(L1))

h3 ∈ L(τ(L3))

It remains to show that pattern(t2, tL′2 , i)∧ψL′2
encodes h2 = valC,β(t′2) ∈ L(τ(L∗2)).

By definition of pattern if valC,β(pattern(t2, tL′2 , i)) = tt holds, then

valC,β(t2) ≡Fut valC,β(tL′2)i

As additionally ψL′2
∧ χL2 holds, by Lemma 3 tL2 and induction hypothesis:

valC,β(t2) ≡Fut h
′i

h′ ∈ L(τ(L2))

Thus
h2 ∈ L(τ(Li2)) ⊆ L(τ(L∗2))

– L2 is not linear. The only difference to the previous case is that in the disassembly,
B(t2) is not empty. Then χL has additional conjuncts encoding the branches of L2.
As all the branches also have star-height of k or lower, by induction hypothesis we
can construct χ formulas for them and the rest of the proof is analogous.

For Theorem 2

Let S0 be an ABS system and G admissible global type, such that S0 initially fits
to G. If for every method m of S0 there is a proof that Φ

G̃�m
is an invariant, then

S0 is captured by G.

Proof. The main step in this proof is showing that the following statement holds:
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Let (S0, . . . , Sn) be a sequence of systems, such that Si → Si+1, i < n and Sn is
terminated. At every i < n, the history of Si is a prefix of some permutation of
some element of L(τ(G)).

∀i < n. ∃h, h′ ∈ Ev∗. his(Si) v h ∧ π(h, h′) ∧ h′ ∈ L(τ(G)) (?)

This means that there is a history h in L(τ(G)) that the system builds step by step. Given
the above statement, it remains to show that if a system terminates it has not realized some
prefix h′ of some history h in L(τ(G)), but indeed the whole history h.

Induction on the length of (S0, . . . , Sn) to prove ?

• Induction Base n = 0: As G is well-formed it has the form

0
f−→ A :m . G′

For some A, f,m. As S0 initially fits to G, its history is a singleton

[invREv(0,A,m, f,~e)]

This must be the prefix of any history in L(τ(G))

• Induction Step n > 0 We have to show that if at position i < n, the history of Si is a
prefix of some permutation of some element of L(τ(G)), then the history of Si+1 is also
a prefix of some permutation of some element of L(τ(G)).

∀i < n.
((
∃h, h′ ∈ Ev∗. his(Si) v h ∧ π(h, h′) ∧ h′ ∈ L(τ(G))

)
→
(
∃h, h′ ∈ Ev∗. his(Si+1) v h ∧ π(h, h′) ∧ h′ ∈ L(τ(G))

))
First, it is not possible that his(Si)�O is the prefix of some permutation of some history

in L(τ(G̃�O)) \ L(τ(G�O)): If this would be the case, there must be a position k with

his(Si)[k] = futREv(O, f, C(~e))

or
his(Si)[k] = throwREv(O, f, C(~e))

such that the outermost constructor C is a label for one of the new added branches in
L̃. Then, by well-formedness there must be a l < k, such that

his(Si)[l] = futEv(O′, f,m,C(~e))

or
his(Si)[l] = throwEv(O′, f,m,C(~e))

I.e. another process terminated and the return value/thrown exception has the required
label. However if this results from an added branch, there is no action in the type of any
other method that translates to such an event.

We make a case distinction over the rule enabling Si → Si+1
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– internal: As his(Si) = his(Si+1), the property trivially holds. Note that the
awaitEv event encodes control release according to the act functions, which we used
to determine whether an object is active.

– inner: In this case his(Si+1) = his(Si) ◦ [ev ] and ev is not an invocation reaction
event. Let O be the object and p the process of O issuing ev . Let p be computing
the method m and L = G�m it local type. As ΦL̃ is an invariant, by Lemma 4 and
the above observation, every history m realizes is in L(τ(L)).

Obviously, his(Si)�o′= his(Si+1)�o′ for any object but O. The process p was already
active in Si. Let h, h′ be two histories as required by ?, such that his(Si) v h. We
distinguish two cases

∗ ev does not correspond to the first action after an offering operator:

As ΦL̃ is an invariant, by Lemma 4 and the above observation, every step that
the process p can make, is captured by some branch in the type. Let h, h′ be
two histories with his(Si) v h, π(h, h′) and h′ ∈ L(τ(L)). We can choose h′

according to the branch of L, that has been executed so far and that has ev
as its next action. Such a branch must exist, otherwise the ΦL̃ would not be
an invariant. For this history h′, we can again use h as the permutation and
his(Si+1) v h holds.

∗ ev corresponds to the first action after an offering operator:

Thus it corresponds to a Get f :C action in the type and p evaluates a f.get
expression. By Lemma 3 and well-formedness of G, this is possible because
p can access f . There is a proof tree that ΦL̃ is an invariant. KeY-ABS
splits the proof when symbolically executing the read access to futures. The
condition that the outermost constructor has a certain form has been proven for
all branches, thus the method has an execution path for every offering branch
in L, especially for the one which contains the corresponding action.

If it is ensured that there is some h′ ∈ L(τ(L)) that realizes the correct branch,
the rest of this case is analogous to the other case.

– start This rule starts a new process in some object O. The added event ev is an
invocation reaction event. The invocation event that is needed to invoke this rule
is some element of h, and h is a prefix of a history accepted by G, thus ev must be
added at some point to the history and is captured by the type. It remains to show
that the correct process is started, i.e. (h ◦ [ev ]) �O is a prefix of the same history
as h.

Suppose this would not be the case. The object O must be inactive, so the possible
actions are reactivation or process starting. If there is even a choice, G would not
be well-formed, thus if this rule has been applied, it starts the correct process.

– continue This case is analogous to the case for startActive: as G is admissible,
at every point an object can activate or start a process it is enforced by callee and
suspension guards that there is no choice possible. Also reactivation does not add
an event to the history: his(Si) = his(Si+1).

From this induction follows that his(Sn) is the prefix of some local-order preserving permu-
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tation of some history described by G:

∃h, h′ ∈ Ev∗. his(Sn) v h ∧ π(h, h′) ∧ h′ ∈ L(τ(G))

It remains to show that Sn describes the whole history, i.e. h v his(Sn) holds and thus
h = his(Sn).

Suppose this would not be the case. Then there would be some non-empty suffix g such that
h = his(Sn)◦g. The events in g must be issued by some process p in some object O. Especially
the resolving/throwing event of p must yet be added to the history. As Sn is terminated, all
processes are terminated, no process is suspended and there is no further step possible, i.e.
there is no invocation in the history without corresponding invocation reaction event. In this
situation, G has a node i in its AST, such that act(i, o) = ⊥ but action(i) 6= end. But at this
point no projection to a object-local type is defined and G would not be well-formed. This is
a contradiction.

For Theorem 3

Let S0 be an ABS system and G an global type, such that S0 initially fits to G. If
for every method m of S0 there is a proof that Φ

G̃�m
is an invariant and the scheduler

of each object p accepts the same language as A(G�p), then S0 is captured by G.

Proof. The proof is analogous to the one for Theorem 2, except for the justification why the
rule start and continue preserve (∗) (i.e. start adds the correct event to the history and
continue reactivated the correct process):

Suppose start would add the wrong event invREv(O,O′, f,m,~e), i.e. start the wrong
process. The object was inactive before, thus there is a correct process that can be acti-
vated (not necessarely now) with an event invREv(O,O′, f ′,m′, ~e′) or reactivated (without
event). By premisse the scheduler accepted the activation of this process, i.e. the input
(start,m, f). But the scheduler encodes the order of invocation reaction events: If two
invREv events invREv(O,O′, f,m,~e), invREv(O,O′, f ′,m′, ~e′) are in some order in a history
h ∈ L(τ(G)), then they are letters (start,m, f), (start,m′, f ′) in the same order on m,m′

in some w ∈ L(A(G �O)). Thus if the scheduler accepts the query (start,m, f) can not be
wrong. The case for continue is analogous.
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[2] Beckert, B., Hähnle, R., and Schmitt, P. H. Verification of Object-oriented Soft-
ware: The KeY Approach, vol. 4334 of LNCS. Berlin, Heidelberg, 2007.

[3] Bocchi, L., Honda, K., Tuosto, E., and Yoshida, N. A theory of design-by-
contract for distributed multiparty interactions. In CONCUR’10 (2010), vol. 6269 of
LNCS, Springer, pp. 162–176.
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