Abstract Behavioural Modelling of Biomolecular Circuits

Radu Muschevici, Reiner Hähnle

Department of Computer Science, TU Darmstadt

— joint work with —

Thea Lotz, Beatrix Süß, Marc Vogel
Department of Biology, TU Darmstadt

2nd ABS Workshop
Darmstadt, 2018-05-29
Inter-disciplinary collaboration between biologists, physicists, computer scientists, chemists, philosophers…

Goal: develop & implement computer-based methods for the synthesis of robust complex genetic circuits in biological systems.

Replace current trial-and-error approaches with more efficient ones.

Our role in the project

- Model and analyse genetic circuits using methods for formal specification of software.
- We use ABS, with all its advantages over programming languages & maths based techniques.
Biomolecular Engineering & Synthetic Biology

Biomolecular Engineering

- Manipulation of key biomolecules: nucleic acids, proteins, carbohydrates, etc.
- Applications: environment, agriculture, energy, food production, biotechnology, medicine, ...

Synthetic Biology

- Construction of *synthetic* molecular and cellular machinery and systems
- *Engineering* of biology: synthesis of biological systems that display functions that do not exist in nature
Systems Biology: a Cynical View

- Systems Biology: the current **gold rush** for many **mathematical** and technical disciplines looking for **nutrition** (funding, self-esteem) in the **scientific food chain**
- Biophysics, Biomatics, Bioinformatics, Biostatistics...
- The story goes like this:
- I do X
- I do it for my pleasure, because I studied it, and anyway, this is the **only** thing I will do in my current incarnation...
- ...fortunately X is **very** useful for Biology
- When you have a **hammer**, everything looks like a **nail**

© Oded Maler, Dagstuhl Seminar 18082, Feb. 2018
Biologists are essentially very concrete beings, spending most of their time in the kitchen doing manual work.

They were not selected (initially) based on ability to manipulate imaginary concepts or creativity and rigor in the abstract world of ideas but rather...

..based on their rigor and efficiency at the bench.

Now when they need to make a real science out of their details they need noble white collar brahmins, namely..

... physicists, mathematicians, computer scientists, as spiritual guides.

Like monotheists converting the pagans, these merchants of abstract methodologies try to impress the poor savage with their logics and miracles.
Systems Biology: a Humble View

- Biologists are working with the most fascinating, complex and mysterious real-life phenomena
- Living systems are more complex than the hydrogen atom or the electromagnetic field (and are not effectively reducible to them)
- Living systems are more sophisticated than your dumb terminal or smart phone or mobile robot or car
- Living systems are more mysterious and primordial than the prime numbers, the algebra of Boole or the free monoid
- If some of our dry tricks can help them, even a bit, in their grand march toward...
- ..understanding something about Life Itself or helping doctors kill less patients
- We should be very happy and proud for doing, for once, something meaningful
The Central Dogma of Molecular Biology: Replication, Transcription, Translation

DNA & RNA
- Sequences of 4 types of nucleotides
- DNA molecule contains a living organism’s entire genetic code
- RNA molecule encodes individual gene

Protein
- Sequence of 20 types of amino acids
- Performs the functions of a cell

DNA → RNA → Protein: Gene expression code ↞ behaviour
Translation of mRNA to Protein

Transcription produces several types of RNA, including messenger RNA (mRNA).

Translation of mRNA to protein

- Ribosomes slide along mRNA (5’ → 3’)
- Read 3 nucleotides (a codon) at a time
- For each codon, a specific amino acid is produced, appended to previous
- Complete chain of amino acids = protein
The Suess Lab

Goals
- Study role of RNA in regulating gene expression
- Engineering of riboswitches that can regulate gene expression

Motivation
- Types of proteins produced determine the function & activity of a cell
- By controlling gene expression, one can influence how a cell functions

Approach
- Experiments in the wet-lab
Ribonucleic Acid (RNA)

- RNA molecule is *single stranded*.
- It folds into complex, stable 3-dimensional shapes (*secondary structure*).
- *Shape* influences *translation*.
Research Question

An Improved Understanding of . . .

► the influence of mRNA secondary structures on the efficiency of translation
► specifically, the influence of aptamers
Why is This Important?

Create modular building blocks for biomolecular circuit design
Requirements

Successful construction of synthetic biological circuits requires:

- precise understanding of intra-cell behavior
- predictable behavior
- repeatable outcome
- robustness (in a variable environment)
Why is This Difficult?

Huge Design Space for Precise Modeling

Aptamer-mediated translation influenced by many factors, including...

▸ nucleotide sequence of aptamers
▸ position of aptamers along mRNA
▸ number of deployed aptamers
▸ kind and concentration of ligand used
Why is This Difficult?

Mechanisms that cause observed behavior partially unknown...

▶ How does mRNA secondary structure affect ribosomal migration?
▶ How does ribosomal migration affect mRNA secondary structure?
▶ How do ligands alter secondary structure?

Difficulties in Experimentation

▶ Considerable effort to perform experiments (person days, manual effort)
 ▶ sparse measuring points
 ▶ slight variations in experimental set-up
▶ Direct observation impossible (instead, e.g., fluorescence)
▶ Measurement/analysis of single cell behaviour difficult
▶ Huge experimental design space
▶ How generalizable/transferable/comparable are experimental results?
Our Approach

Modeling biological organisms as concurrent, OO software

NOT: programming a simulator
BUT: the software behaves like the organism it models

► Experiment “in silico”, better “in ordinatro”
► Need suitable modeling language . . .
The Abstract Behavioral Specification (ABS)* Language, 2009ff

- Formal, executable, concurrent modeling language
- Object-oriented style, Java-ish syntax
 - Domain modeling with data types or with objects/classes
- Eclipse-based and web-based IDEs available
- Concurrent execution designed to be verifiable
- Complete ABS models can be (non-deterministically) simulated
- (Partial) models can be analyzed:
 - Resource consumption, including termination
 - Formal verification against (safety) properties

*http://www.abs-models.org/
Rationale

1. Programming languages are notations that express the behavior of a (computing) system in a concise manner
Models as Programs

Rationale

1. Programming languages are notations that express the behavior of a (computing) system in a concise manner.

2. Decades of research into programming languages resulted in well-understood and practically useful concepts:
 - Data abstractions: data types, object-oriented models, ...
 - Computation abstractions: procedure calls, iterators, local variables, ...
 - Concurrency abstractions: processes, synchronization, scheduling, ...
Rationale

1. Programming languages are notations that express the behavior of a (computing) system in a concise manner.

2. Decades of research into programming languages resulted in well-understood and practically useful concepts:
 - Data abstractions: data types, object-oriented models, ...
 - Computation abstractions: procedure calls, iterators, local variables, ...
 - Concurrency abstractions: processes, synchronization, scheduling, ...

Abstract Behavioral Modeling Principle

1. Design a “programming language” tailored to modeling.

2. Model elements+behavior of real systems as “programs” in that language.
System to be modeled
Work Flow of Behavioral Modeling

Modeling

System to be modeled Formal, executable model
Work Flow of Behavioral Modeling

Does the model behave like the modeled system?

System to be modeled → Formal, executable model → Execute model: Simulation Calibration

Modeling
Work Flow of Behavioral Modeling

System to be modeled → Formal, executable model

Modeling

Conjectured/stipulated property
Work Flow of Behavioral Modeling

1. **System to be modeled** → **Modeling** → **Formal, executable model**

2. **Conjectured/stipulated property** → **Formalization** → **Formally specified property**
Work Flow of Behavioral Modeling

Does the model respect the conjectured property?

- System to be modeled
- Formal, executable model
- Conjectured/stipulated property
- Formally specified property
- Execute model: Simulation
- Check property: At runtime
Work Flow of Behavioral Modeling

Do all possible model behaviors respect the conjectured property?

System to be modeled → Formal, executable model → Formal, formally specified property

Modeling

Analyze model: Verification

Check property

Statically (for any run)

Conjectured/stipulated property

Formalization
Work Flow of Behavioral Modeling

System to be modeled

Conjectured/stipulated property

Modeling

Formal, executable model

Formalization

Formally specified property

Concrete test case

Generate Test Cases that cover a property

May 28, 2018 | CS SE | Radu M. | 19
Work Flow of Behavioral Modeling

Model Validation

Concrete test case

System to be modeled

Modeling

Formal, executable model

Formalization

Conjectured/stipulated property

Formally specified property
Work Flow of Behavioral Modeling

1. **System to be modeled**
2. **Modeling**
3. **Formal, executable model**
4. **Conjectured/stipulated property**
5. **Formalization**
6. **Formally specified property**
7. **Failed model run**
8. **Analyze model: Failed**
9. **Verification**
10. **Analyze failure**
11. **Check property**
Work Flow of Behavioral Modeling

1. Experiment Design
2. Modeling
3. Formalization

- System to be modeled
- Formal, executable model
- Conjectured/stipulated property
- Formally specified property
- Failed model run
Advantages (technical)

OO model easy to understand for (some) Bio domain experts

```java
1 class Ribosome(Cell cell) implements Ribosome {
2     Unit run() {
3         while (active) {
4             Mrna mrna = await cell!obtainMrna();
5             Bool attached = await mrna!attach(this);
6             if (attached) {
7                 this.scan(mrna);
8                 this.decode(mrna);
9                 await mrna!detach(this);
10             }
11         }
12     }
13     Unit scan(Mrna mrna) {...}
14     Unit decode(Mrna mrna) {...}
15     ...
16 }
```
Advantages (technical)

OO model easy to modify, instrument, visualize

Simulation Configuration

- Start Time: 240
- Stop Time: 540
- Translation: ✔
- initial Proteins: 500
- Ribosomes: 500
- mRNAs: 10
- Aptamers: 2
- Ligand: ✔
- Cell growth: ✔

Set

Translation simulation (single cell)
Advantages (technical)

Parallelization is easy

- Active, concurrent objects; deployment components
- ABS compiles to Erlang, Haskell; potential to run on MP hardware

©Argonne National Laboratory
Advantages (methodological)

- Find out which in vivo experiments are likely to gain insights before actually performing them:
 - reduce # of required experiments
 - design more targeted experiments

- Model-based explanation and prediction
 - Attempt to use model for finding explanations (more detailed observations)
 - Test new conjectured causation in model first
 - Attempt to predict result of in vivo experiments

- Permits static analysis of all possible behaviors
 - gain insight into inherent properties of a model
1. Model: single cell with translation mechanism
2. Calibrate: fit model to experiment
3. Validate: can we correctly predict known behavior? ← we are here
4. Cash in on opportunities mentioned earlier
Use our model to better understand regulatory mechanisms for gene expression.

Some questions to be answered:

▶ Why is effect of multiple aptamers non-linear?
▶ Why does aptamer position influence regulation?
▶ How to fine-tune translational regulation?

Conjecture and test possible explanations in model.

ABS Model Characteristics

A typical yeast (*Saccharomyces cerevisiae*) cell has

- 200,000 ribosomes — we currently simulate 500
- 20,000–60,000 mRNAs — we simulate 10
- 12 Million DNA nucleotides — we currently don’t go there

Model:

- Cell, ribosomes, mRNAs are active objects
- Primary molecular structure represented as list
- Decoding of mRNA by ribosome implemented with asynchronous messages

```plaintext
while (...) {
    Nucleotide n = await mrna!readNucleotide(position);
    canProceed = await mrna!canAdvance(this, position);
    position = await mrna!advance(this, position);
}
```
Example: Ribosome–Cell interaction

- Model: Ribosomes *message* the cell for an mRNA molecule available for decoding – cell processes messages sequentially.
- Reality: Ribosomes *bump into* an mRNA in their proximity – can happen concurrently.

Example: Ribosomes decoding mRNA

- Model: Ribosomes *message* the same mRNA before they can advance – mRNA processes messages sequentially, performance bottleneck.
- Reality: the molecule itself is distributed in space – many ribosomes decode the same molecule concurrently, advance by “trying” – can happen concurrently.
ABS Advantages

- Complex, fine-grained models that are easy to understand/maintain/evolve
- Abstract time highly useful (but don’t let your time slices become too small)
- HTTP API great for communicating with domain experts (biologists)
- ABS usability has improved tremendously over past year.

Proximity to Application Domain

- Communication: by message passing in ABS — by diverse means in nature
- Asynchronous message exchanges are not cheap
- Reality is more concurrent than we can (reasonably) model in ABS
- But models don’t need to match detail level of reality to be useful.
(Possible) future directions

- Floating point numbers will facilitate data I/O.
- Increase level of concurrency of model with available means (active objects, concurrent linked lists?); use high performance hardware
- Explore more flexible concepts of concurrency, communication (multiactive objects, finer-grained notion of space (distance, movement), concurrent data structures, ...)