
Asynchronous Cooperative Contracts for

Cooperative Scheduling?

Eduard Kamburjan1, Crystal Chang Din2,
Reiner Hähnle1, and Einar Broch Johnsen2

1 Department of Computer Science, Technische Universität Darmstadt, Germany
{kamburjan,haehnle}@cs.tu-darmstadt.de

2 Department of Informatics, University of Oslo, Norway
{crystald,einarj}@ifi.uio.no

Abstract. Formal speci�cation of multi-threaded programs is notori-
ously hard, because thread execution may be preempted at any point. In
contrast, abstract concurrency models such as actors seriously restrict
concurrency to obtain race-free programs. Languages with cooperative
scheduling occupy a middle ground between these extremes by explicit
scheduling points. They have been used to model complex, industrial con-
current systems. This paper introduces cooperative contracts, a contract-
based speci�cation approach for asynchronous method calls in presence
of cooperative scheduling. It permits to specify complex concurrent be-
havior succinctly and intuitively. We design a compositional program
logic to verify cooperative contracts and discuss how global analyses can
be soundly integrated into the program logic.

1 Introduction

Formal veri�cation of complex software requires decomposition of the veri�cation
task to combat state explosion. The design-by-contract [47] approach associates
with each method a declarative contract capturing its behavior. Contracts allow
the behavior of method calls to be approximated by static properties. Contracts
work very well for sequential programs [4], but writing contracts becomes much
harder for languages such as Java or C that exhibit a low-level form of concur-
rency: contracts become bulky, hard to write, and even harder to understand [10].
The main culprit is preemption, leading to myriads of interleavings that cause
complex data races being hard to contain and to characterize.

In contrast, methods in actor-based, distributed programming [7] are exe-
cuted atomically and concurrency only occurs among actors with disjoint heaps.
In this setting behavior can be completely speci�ed at the level of interfaces, typ-
ically in terms of behavioral invariants jointly maintained by an object's meth-
ods [20, 23]. However, this restricted concurrency forces systems to be modeled

? This work is supported by the SIRIUS Centre for Scalable Data Access, and the
FormbaR project, part of AG Signalling/DB RailLab in the Innovation Alliance of
Deutsche Bahn AG and TU Darmstadt. Proofs can be found in our accompanying
report [42].

2 Kamburjan, Din, Hähnle, Johnsen

and speci�ed at a high level of abstraction, essentially as protocols. It precludes
modeling of concurrent behavior that is close to real programs, such as waiting
for results computed asynchronously on the same processor and heap.

Active object languages [19] occupy a middle ground between preemption and
full distribution, based on an actor-like model of concurrency [3] and futures to
handle return values from asynchronous calls (e.g., [9, 16, 20, 25, 29, 46, 52]). In
this context, ABS [38] supports cooperative scheduling between asynchronously
called methods. With cooperative scheduling, tasks may explicitly and volun-
tarily suspend their execution, such that a required result may be provided by
another task. This way, method activations on the same processor and heap co-
operate to achieve a common goal. This is realized using a guarded command
construct await f?, where f is a reference to a future. The e�ect of this construct
is that the current task suspends itself and only resumes once the value of f is
available. Although only one task can execute at any time, several tasks may
depend on the same condition, which may cause internal non-determinism.

The aim of this paper is to generalize method contracts from the sequen-
tial to the active object setting, with asynchronous method calls, futures and
cooperative scheduling. The active object setting raises the following challenges:

1. Call Time Gap. There is a delay between the asynchronous invocation of
a method and the activation of the associated process. During this delay,
the called object (�callee�) may execute other processes. To enter the callee's
contract the precondition must hold. But even when that precondition holds
at invocation time, it does not necessarily do so at activation time.

2. Strong Encapsulation. Each object has exclusive access to its �elds. Since
the caller object cannot access the �elds of the callee, it cannot ensure the
validity of a contract precondition that depends on the callee's �elds.

3. Interleaving. In cooperative scheduling, processes interleave at explicitly
declared scheduling points. At these points, it is necessary to know which
functional properties will hold when a process is scheduled and which prop-
erties must be guaranteed when a process is suspended.

4. Return Time Gap. Active objects use futures to decouple method calls
from local control �ow. Since futures can be passed around, an object reading
a future f knows in general neither to which method f corresponds nor the
postcondition that held when the result value was computed.

The main contributions of this paper are: 1. A formal speci�cation-by-contract
technique for methods in a concurrency context with asynchronous calls, futures,
and cooperative scheduling. 2. A contract-based, compositional veri�cation sys-
tem for functional properties of asynchronous methods that addresses the above
challenges. We call our generalized contracts cooperative contracts, because they
cooperate through propagation of conditions according to the speci�ed concur-
rency context. Their concrete syntax is an extension of the popular formal spec-
i�cation language JML [45].

We demonstrate by example that the proposed contracts allow complex con-
current behavior to be speci�ed in a succinct and intelligible manner.

Asynchronous Cooperative Contracts 3

2 Method Contracts for Asynchronous Method Calls

We introduce the main concepts of active object (AO) languages and present
the methodology of our analysis framework in an example-driven way. AO lan-
guages model loosely coupled parallel entities that communicate by means of
asynchronous method calls and mailboxes, i.e. futures. They are closely tied
to the OO programming paradigm and its programming abstractions. We go
through an example implemented in the ABS language [2, 38], an AO language
with cooperative scheduling that was used to model complex, industrial concur-
rent systems [5].

2.1 Description of the Example

We use a distributed computation of moving averages, a common task in data
analysis that renders long-term trends clearer in smoothened data. Given data
points x1, . . . , xn, many forms of moving average avg(x1, . . . , xn) can be ex-
pressed by a function cmp that takes the average of the �rst n− 1 data points,
the last data point and a parameter α:

avg(x1, . . . , xn) = cmp(avg(x1, . . . , xn−1), xn, α)

For example, an exponential moving average demands that α is between 0 and
1 and is expressed as avg(x1, . . . , xn) = α ∗ xn + (1− α) ∗ avg(x1, . . . , xn−1).

Fig. 1 shows the central class Smoothing. Each Smoothing instance holds a
Computation instance comp in c, where actual computation happens and cmp is
encapsulated as a method. A Smoothing instance is called with smooth, passes
the data piecewise to c and collects the return values in the list of intermediate
results inter. During this time, it stays responsive: getCounter lets one inquire
how many data points are processed already. Decoupling list processing and
value computation increases usability: one Smoothing instance may be reused
with di�erent Computation instances. There are a number of useful properties
one would like to specify for smooth: 1. c has been assigned before it is called
and is not changed during its execution. 2. No two executions of smooth overlap
during suspension. 3. The returned result is a smoothened version of the input.

We explain some speci�cation elements. We assign unique names to each
atomic segment of statements between suspension points. They are labeled with
the annotation [atom: "string"] at an await statement. The named scope �str�
is the code segment from the end of the previous atomic segment up to the
annotation. The �rst atomic segment starts at the beginning of a method body,
the �nal atomic segment extends to the end of a method body and is labeled
with the method name. There are also sync: labels at future reads. We use a
ghost �eld [36] lock to model whether an invocation of smooth is running or
not. A ghost �eld is not part of the speci�ed code. It is read and assigned in
speci�cation annotations which are only used by the veri�cation system.

4 Kamburjan, Din, Hähnle, Johnsen

1 interface ISmoothing
2 extends IPositive {
3 Unit setup(Computation comp);
4 Int getCounter();
5 List<Rat>
6 smooth(List<Rat> input, Rat a);
7 }
8 class Smoothing
9 implements ISmoothing {

10 Computation c = null;
11 Int counter = 1;
12 //@ ghost Bool lock = False;
13 Unit setup(Computation comp) {
14 c = comp;
15 }
16 Int getCounter() {
17 return counter;
18 }

19 List<Rat> smooth(List<Rat> input, Rat a) {
20 //@ lock = True;
21 counter = 1;
22 List<Rat> work = tail(input);
23 List<Rat> inter = list[input[0]];
24 while (work != Nil) {
25 Fut<Rat> f = c!cmp(last(inter), work[0], a);
26 counter = counter + 1;
27 [atom: "awSmt"] await f?;
28 [sync: "sync"] Rat res = f.get;
29 inter = concat(inter, list[res]);
30 work = tail(work);
31 }
32 //@ lock = False;
33 counter = 1;
34 return inter;
35 }
36 }

Fig. 1. ABS code of the controller part of the distributed moving average

2.2 Specifying State in an Asynchronous Setting

During the delay between a method call and the start of its execution, method
parameters stay invariant, but the heap may change. This motivates break up
the precondition of asynchronous method contracts into one part for parameters
and separate one for the heap. The parameter precondition is guaranteed by
the caller who knows the appropriate synchronization pattern. It is part of the
interface declaration of the callee and exposed to clients. (Without parameters,
the parameter precondition is true.) The heap precondition is guaranteed by the
callee. It is declared in an implementing class and not exposed in the interface.

Example 1. The parameters of method smooth must ful�ll the precondition that
the passed data and parameter are valid. The heap precondition expresses that
a Computation instance is stored in c.

interface ISmoothing { ...
/∗@ requires 1 > a > 0 && len(input) > 0 @∗/
List<Rat> smooth(List<Rat> input, Rat a); }

class Smoothing { ...
/∗@ requires !lock && c != null @∗/
List<Rat> smooth(...) { ... } }

To handle inheritance we follow [4] and implement behavioral subtyping. If
ISmoothing extended another interface IPositive the speci�cation of that inter-
face is re�ned and must be implied by all ISmoothing instances:

interface IPositive{ ...
/∗@ requires \forall Int i; 0 <= i < len(input) ; input[i] > 0 @∗/
List<Rat> smooth(List<Rat> input, Rat a); }

interface ISmoothing extends IPositive { ... } // inherits parameter precondition

A caller must ful�ll the called method's parameter precondition, but the most
recently completed process inside the callee's object establishes the heap precon-
dition. To express this a method is speci�ed to run in a concurrency context, in
addition to the memory context of its heap precondition. The concurrency con-
text appears in a contract as two context sets over atomic segment names:

Asynchronous Cooperative Contracts 5

� Each atomic segment in the context set succeeds must guarantee the heap
precondition when it terminates and at least one of them must run before
the speci�ed method starts execution.

� Each atomic segment in the context set overlaps must preserve the heap pre-
condition. Between the termination of the last atomic segment from succeeds
and the start of the execution of the speci�ed atomic segment, only atomic
segments from overlaps are allowed to run.

Context sets are part of the interface speci�cation and exposed in the in-
terface. Classes may extend context sets to add private methods. Observe that
context sets represent global information unavailable when a method is analyzed
in isolation. Undeclared context sets default to all atomic segments, whence the
heap precondition degenerates into a class invariant and must be guaranteed by
each process at each suspension point [22]. Method implementation contracts
need to know their expected context, but the global protocol at the object level
can be speci�ed and exposed in a separate coordination language, such as ses-
sion types [35]. This enforces a separation of concerns in speci�cations: method
contracts are local and specify a single method and its context; the coordina-
tion language speci�es a global view on the whole protocol. Of course, local
method contexts and global protocols expressed with session types [40,41] must
be proven consistent. Context sets can also be veri�ed by static analysis once
the whole program is available (see Sect. 2.5).

Example 2. The heap precondition of smooth is established by setup or by the
termination of the previous smooth process. Between two sessions (and between
setup and the start of the �rst session) only getCount may run. Recall that the
method name labels the �nal atomic segment of the method body.

Postconditions (ensures) use two JML-constructs: \result refers to the return
value and \last evaluates its argument in the state at the start of the method.
We specify that the method returns a strictly positive list of equal length to the
input, which is bounded by the input list. Furthermore, the object is not locked.

interface ISmoothing { ...
/∗@ succeeds {setup, smooth};

overlaps {getCounter}; @∗/
List<Rat> smooth(List<Rat> input, Rat a); }
class Smoothing { ...
/∗@ ensures !lock && len(\result) == len(input) &&

\forall Int i; 0 <= i < len(\result);
\result[i] > 0 && min(input) <= \result[i] <= max(input); @∗/

List<Rat> smooth(List<Rat> input, Rat a) { ... } }

The speci�ed concurrency context is used to enrich the existing method con-
tracts: the heap precondition of a method speci�ed with context sets is implicitly
propagated to the postcondition of all atomic segments in succeeds, and to pre-
and postconditions of all atomic segments in overlaps.

Example 3. We continue Example 2. After propagation, the speci�cations of
setup, smooth and getCounter are as follows. The origin of the propagated formula
is indicated in comments.

6 Kamburjan, Din, Hähnle, Johnsen

/∗@ ensures <as before> && !lock && c != null // succeeds smooth @∗/
List<Rat> smooth(List<Rat> input, Rat a) { ... }
/∗@ ensures !lock && c != null // succeeds smooth @∗/
Unit setup(Computation comp) { ... }
/∗@ ensures \last(!lock && c != null) −> !lock && c != null // overlaps smooth @∗/
Int getCounter() { ... }

In case of inheritance context sets of the extended interface are implicitly
included in the extending class or interface. A class may extend context sets
with private methods not visible to the outside. It is the obligation of that class
to ensure that private methods do not disrupt correct call sequences from the
outside. From an analysis point of view, private methods are no di�erent than
public ones.

2.3 Specifying Interleavings

An await statement introduces a scheduling point where process execution may be
suspended and possibly interleaved with the execution of other processes. From
a local perspective, the await statement can be seen as a suspension point where
information about the heap memory is lost, which requires similar reasoning as
for heap preconditions: What is guaranteed at release of control, what can be
assumed upon reactivation, and who has the obligation to guarantee the heap
property. Hence, each suspension point is annotated with a suspension contract
containing the same elements as a method contract: An ensures clause for the
condition that holds upon suspension, a requires clause for the condition which
has to hold upon reactivation, a succeeds context set for the atomic segments
which must have run before reactivation and an overlaps context set for atomic
segments whose execution may interleave. (As method names label the �nal
atomic segments, all such atomic segments contain a return statement. A name
may refer to multiple atomic segments in case of, for example, loops.)

Example 4. We specify the behavior of the suspension point at the await state-
ment with label "awSmt" (below left): At continuation, the object is still locked
and the Computation instance cmust be present. During suspension, only method
getCounter is allowed to run. By adding itself to the succeeds set, it is ensured
that the suspension has to establish its own suspension assumption. The speci-
�cation after propagation is shown below right. (Propagation from context sets
into pre- and postconditions of suspension contracts is analogous to the proce-
dure for method contracts.)

/∗@ requires lock && c != null;
ensures True;
succeeds {awSmt};
overlaps {getCounter}; @∗/

[atom: "awSmt"] await f?;

/∗@ requires lock && c != null;
ensures lock && c != null;
succeeds {awSmt};
overlaps {getCounter}; @∗/

[atom: "awSmt"] await f?;

The postcondition of getCounter is now as follows and encodes a case distinction.

/∗@ ensures \last(!lock && c != null) −> !lock && c != null // overlaps smooth
&& \last(lock && c != null) −> lock && c != null // overlaps awSmt @∗/

Int getCounter() { ... }

Asynchronous Cooperative Contracts 7

2.4 Specifying the Postcondition

In contrast to synchronous method contracts, the postcondition that speci�es
the return value need not be used immediately after a method terminates, but
only when accessing the associated future. This future may be passed around,
so the client accessing a future might not even know which method resolved
it. To provide this context we use a resolve contract, a set containing those
methods that can resolve a future. During the generation of proof obligations
(after propagation), the postconditions of the resolving methods can be retrieved.

The client accessing a future might not be its creator, so properties of method
parameters and class �elds in the postcondition of the method associated to the
future should be hidden. We extract that postcondition only to read the result at
the client side, and de�ne this postcondition in the interface of the correspond-
ing method. The postcondition in the implementation of a method may contain
properties of �elds, parameters and results upon termination. In analogy to the
split of precondition, we name the two types of postcondition interface postcon-
dition and class postcondition, respectively. Only if the call context is known,
the class postcondition may be used in addition to the interface postcondition.

Concerning inheritance, we follow the well-known subtyping rules for syn-
chronous contracts in languages like Java [4].

Example 5. Consider the following speci�cation of a computation server. It guar-
antees that if postive data is provided as input, then the output is positive.

The implementation speci�es that the return value bounded by the two input
values. This is encapsulated in the class�the process reading a future associated
with this method has no access to the input. In our example, the call parameters
are know so we are able to specify as follows and use the full information.

/∗@ resolvedBy {TBound.compute} @∗/
[sync: "sync"] Rat res = f.get;

2.5 Composition

The speci�cation above is modular in the following sense: To prove that a method
adheres to the pre- and postcondition of its own contract and respects the pre-
and postcondition of called methods requires only to analyze its own class. To
verify that a system respects all context sets, however, requires global informa-
tion, because the call order is not established by a single process in a single
object. This separation of concerns between functional and non-functional spec-
i�cation allows to decompose veri�cation into two phases that allow reuse of
contracts. In the �rst phase, deductive veri�cation [21] is used to show that lo-
cally single methods implement their pre- and postcondition correctly. In the
second phase, a global light-weight, fully automatic dependency analysis is used
to approximate call sequences. In consequence, if a method is changed with only
local e�ects it is su�cient to re-prove its contract and re-run the dependency
analysis. The proofs of the other method contracts remain unchanged.

8 Kamburjan, Din, Hähnle, Johnsen

Prgm ::= I C main{s} I ::= interface I {S} C ::= class C(T x) {M T x = e}
M ::= S{s; return e} S ::= T m(T x) rhs ::= e!m(e) | e | new C(e)
s ::=

[
sync : “string”

]
x = e.get | x = rhs |

[
atom : “string”

]
await g

| if (e) {s} else {s} | while (e) {s} | skip g ::= e | e? x = v | this.f

Fig. 2. Syntax of the Async language.

Context sets can be veri�ed by static analysis once the whole program is
available. Such analyses build a graph on top of the call and control �ow graphs
of a program, so it is not modular. However, the enriched contracts are modular.

Example 6. Consider di�erent code fragments interacting with a Smoothing in-
stance s. The left fragment fails to verify the context sets speci�ed above: al-
though called last, method smooth can be executed �rst due to reordering, failing
its succeeds clause. The middle fragment also fails: The �rst smooth needs not
terminate before the next process for smooth starts. They may interleave and
violate the overlaps set of the suspension. The right fragment veri�es. We use
await o!m(); as a shorthand for Fut<T> f = o!m(); await f?;.

s!setup(c);

s!smooth(l,0.5);

s!smooth(m,0.4);

await s!setup(c);

s!smooth(l,0.5);

s!smooth(m,0.4);

await s!setup(c);

await s!smooth(l,0.5);

s!smooth(m,0.4);

Resolve contracts can be veri�ed statically by a points-to analysis. They are
natural when reasoning about futures, because at every synchronization point
one must establish what is being synchronized, not just properties of the future
value.

3 An Active Object Language

Syntax. Async is a simple active object language, based on ABS [38]; the syntax
is shown in Fig. 2. We explain the language features related to communication
and synchronization, other features are standard. Objects communicate with
each other by asynchronous method calls, written e!m(e), with an associated fu-
ture. The value of a future f can be accessed by a statement x = f.get once
it is resolved, i.e. when the process associated with f has terminated. Futures
can be shared between objects. Field access between di�erent objects is indirect
through method calls, amounting to strong encapsulation. Cooperative schedul-
ing is realized in Async as follows: at most one process is active on an object at
any time and all scheduling points are explicit in the code using await statements.
Execution between these points is sequential and cannot be preempted.

Objects in Async are active. We assume that all programs are well-typed, that
their main block only contains statements of the form v = new C(e), and that
each class has a run() method which is automatically activated when an instance
of the class is generated. Compared to ABS, Async features optional annotations
for atomic segments as discussed in Sect. 2. A synchronize annotation sync

Asynchronous Cooperative Contracts 9

associates a label with each assignment which has a get right-hand side. We
assume all names to be unique in a program.

Observable Behavior. A distributed system can be speci�ed by the externally
observable behavior of its parts, and the behavior of each component by the pos-
sible communication histories over its observable events [22, 34]. Theoretically
this is justi�ed because fully abstract semantics of object-oriented languages are
based on communication histories [37]. We strive for compositional communica-
tion histories of asynchronously communicating systems and use separate events
for method invocation, reaction upon a method call, resolving a future, fetching
the value of a future, suspending a process, reactivating a process, and for ob-
ject creation. Note that each of these events is witnessed by exactly one object,
namely the generating object; di�erent objects do not share events.

De�nition 1 (Events).

ev ::=invEv(X,X′, f, m, e) | invREv(X,X′, f, m, e) | futEv(X, f, m, e) | futREv(X, f, e, i)
| suspEv(X, f, m, i) | reacEv(X, f, m, i) | newEv(X,X′, e) | noEv

An invocation event invEv and an invocation reaction event invREv record the
caller X, callee X′, generated future f , invoked method m, and method parameters
e of a method call and its activation, respectively. A termination event futEv
records the callee X, the future f , the executed method m, and the method
result e when the method terminates and resolves its associated future. A future
reaction event futREv records the current object X, the accessed future f , the
value e stored in the future, and the label i of the associated get statement.
A suspension event suspEv records the current object X, the current future f
and method name m associated to the process being suspended, and the name
i of the await statement that caused the suspension. Reactivation events reacEv
are dual to suspension events, where the future f belongs to the process being
reactivated. A new event newEv records the current object X, the created object
X′ and the object initialization parameters e for object creation. The event noEv
is a marker for transitions without communication.

Operational Semantics. The operational semantics of Async is given by a
transition relation →ev between con�gurations, where ev is the event generated
by the transition step. We �rst de�ne con�gurations and their transition system,
before de�ning terminating runs and traces over this relation. A con�guration C
contains processes, futures, objects and messages:

C ::= prc(X, f, m(s), σ) | fut(f, e) | ob(X, f, ρ) | msg(X,X′, f, m, e) | C C

In the runtime syntax, a process prc(X, f, m(s), σ) contains the current object
X, the future f that will contain its execution result, the executed method m,
statements s in that method, and a local state σ. A future fut(f, e) contains the
future's identity f and the value e stored by the future. An object ob(X, f, ρ)

10 Kamburjan, Din, Hähnle, Johnsen

contains the object identity X, the future f associated with the currently exe-
cuting process, and the heap ρ of the object. Let ⊥ denote that no process is
currently executing at X. A message msg(X,X′, f, m, e) contains the caller ob-
ject identity X, the callee object identity X′, the future identity f , the invoked
method m, and the method parameters e.

A selection of the transition rules are given in Fig. 3. Function JeKσ,ρ evaluates
an expression e in the context of a local state σ and an object heap ρ. Rule (async)

expresses that the caller of an asynchronous call generates a future with a fresh
identi�er f ′ for the result and a method invocation message. An invocation event
is generated to record the asynchronous call. Rule (start) represents the start of
a method execution, in which an invocation reaction event is generated. The
message is removed from the con�guration and a new process to handle the call
in created. Function M returns the body of a method, and M̂ returns the initial
local state of a method by evaluating its parameters. Observe that a process can
only start when its associated object is idle. Rule (return) resolves future f with the
return value from the method activation. A termination event is generated. Rule
(get) models future access. Provided that the accessed future is resolved (i.e.,
the future occurs in the con�guration), its value can be fetched and a future
reaction event generated. In this rule x is a local variable and is modi�ed to e′.
If the future is not resolved, the rule is not applicable and execution in object X
is blocked. Rule (await) releases control and generates a suspension event. Rule
(react-expr) generates a reactivation event for an idle object and a satis�ed Boolean
guard. Rule (react-fut) similarly generates a reactivation event for an idle object
and a satis�ed future query guard, re�ecting that the future has been resolved.

De�nition 2 (Runs and Traces). Let C1, . . . ,Cn be con�gurations and let
ev1, . . . , evn−1 be events. A run from C1 to Cn is a �nite sequence of transitions

C1 →ev1 C2 →ev2 . . .→evn−1 Cn.

Given a run, its trace is the �nite sequence (ev1,C1), . . . , (evn−1,Cn−1), (noEv,Cn)
of pairs of events and con�gurations.

A con�guration C is terminating if every process in C has terminated, i.e.,
all prc have been removed from the con�guration due to method termination.

De�nition 3 (Big-Step Semantics and Partial Traces). An Async program
Prgm generates a trace tr , written Prgm ⇓ tr , if and only if there is a run from
its initial con�guration to a terminating con�guration with tr as the trace of this
run. A trace tr ′ of Prgm is partial if it is a pre�x of a trace tr with Prgm ⇓ tr .

We use two program analysis techniques: deductive veri�cation and static
analysis.3 Before formalizing their role, we give an informal account.

3 Obviously, deductive veri�cation is static as well, however, it is common [11] to dis-
tinguish between deductive veri�cation, a heavy-weight analysis based on expressive
program logics, and static analyses, light-weight static inference systems, based on
data �ow analysis, variable dependence, etc.

Asynchronous Cooperative Contracts 11

(async)
f ′ is fresh in C

prc(X, f, m(x = e!m′(e′); s), σ) ob(X, f, ρ) C→invEv(X,JeKσ,ρ,f ′,m′,Je′Kσ,ρ)
prc(X, f, m(s), σ[x := f ′]) msg(X, JeKσ,ρ, f ′, m′, Je′Kσ,ρ) ob(X, f, ρ) C

(start)
msg(X′,X, f, m, e) ob(X,⊥, ρ) C→invREv(X′,X,f,m,e)

prc(X, f, m(M(m)), M̂(m, e)) ob(X, f, ρ) C

(return)
prc(X, f, m(return e), σ) ob(X, f, ρ) C→futEv(X,f,m,e)

fut(f, JeKσ,ρ) ob(X,⊥, ρ) C

(get)
prc(X, f, m([sync : “i”]x = e.get; s), σ) ob(X, f, ρ) fut(JeKσ,ρ, e′) C
→futREv(X,JeKσ,ρ,e′,i) prc(X, f, m(s), σ[x := e′]) ob(X, f, ρ) fut(JeKσ,ρ, e′) C

(await)
prc(X, f, m([atom : “i”] await g; s), σ) ob(X, f, ρ) C→suspEv(X,f,m,i)

prc(X, f, m([atom : “i”] await g; s), σ) ob(X,⊥, ρ) C

(react-expr)
JeKσ,ρ = True

prc(X, f, m([atom : “i”]await e; s), σ) ob(X,⊥, ρ) C→reacEv(X,f,m,i)
prc(X, f, m(s), σ) ob(X, f, ρ) C

(react-fut)
prc(X, f, m([atom : “i”] await e?; s), σ) ob(X,⊥, ρ) fut(JeKσ,ρ, e′) C
→reacEv(X,f,m,i) prc(X, f, m(s), σ) ob(X, f, ρ) fut(JeKσ,ρ, e′) C

Fig. 3. Selected Operational Semantics Rules for Async.

Deductive Veri�cation. Enriched method contracts comprise logical con-
straints (pre- and postconditions) and behavioral constraints (context sets and
resolve contracts). Semantically, these are treated uniformly as constraints over
execution traces. Their analysis di�ers considerably, however: for pre- and post-
conditions we use a program logic that follows the successful contract-based de-
ductive veri�cation paradigm for sequential object-oriented programs [4] (later
extended to invariant reasoning on active objects [22]). Decomposing global sys-
tem speci�cations into method contracts is crucial for the scalability of deductive
veri�cation, as it allows large programs to be veri�ed by reasoning about one
method at a time. In contrast, behavioral constraints pertain by their very na-
ture to the complete system. To reason about these in the program logic would
render deductive veri�cation of active object programs non-modular, hence, non-
scalable. Fortunately, the information needed in context sets and resolve con-
tracts can be obtained e�ciently, and with su�cient precision, using lightweight
static analysis techniques on the global program to be veri�ed.

Static Analysis. May-Happen-In-Parallel (MHP) analysis [6] identi�es state-
ments that may possibly run in parallel or can be interleaved. The analysis
produces all pairs (i, j) of named program points with the following semantics:
If two processes on the same object have their active statements at i and j, re-
spectively, then their order of execution is determined by the (non-deterministic)

12 Kamburjan, Din, Hähnle, Johnsen

scheduler. If two processes are active on two di�erent objects, they may run in
parallel at statements i and j of the active objects. MHP analysis also computes
Must-Have-Happened (MHH) pairs. The analysis produces all pairs (i, j) such
that if a process has j as its active statement, then statement i must have been
executed already (�i before j�). Points-To (PT) analysis for futures [26] takes as
argument a �eld or variable of future type and returns the set of methods that
may resolve futures stored at this location. The MHP, MHH, and PT relations
are all undecidable. The algorithms from [6] safely over-approximate. MHP may
have false positives, but no false negatives: the analysis returns a superset of the
true set of MHP pairs. The same holds for PT. MHH may have false negatives,
but no false positives: the analysis returns a subset of the true set ofMHH pairs.

4 Formalizing Method Contracts

To reason about logical constraints, we use deductive veri�cation over dynamic
logic (DL) [32]. It can be thought of as the language of Hoare triples, syntactically
closed under logical operators and �rst-order quanti�ers; we base our account
on [4]. Assertions about program behavior are expressed in DL by integrating
programs and formulas into a single language. The big step semantics of state-
ments s is captured by the modality [s]post which is true provided that post
holds in any terminating state of s, expressing partial correctness. To model
the heap, the reserved program variable heap is used. It maps �eld names to
their value [4, 51]. Variable heapOld holds the heap at the time when the cur-
rent method was scheduled most recently. DL features symbolic state updates
on formulas of the form {v := t}ϕ, meaning that v has the value of t in ϕ.

We formalize method contracts in terms of constraints imposed on runs and
con�gurations. Their semantics is given as �rst-order constraints over traces,
with two additional primitives: the term evtr [i] is the i-th event in trace tr and
the formula Ctr [i] |= ϕ expresses that the i-th con�guration in tr is a model for
the modality-free DL formula ϕ. To distinguish DL from �rst-order logic over
traces, we use the term formula and variables ϕ, ψ, χ, . . . for DL and the term
constraint and variables α, β, . . . for �rst-order logic over traces.

De�nition 4 (Method Contract). Let B be the set of names for all atomic
segments and methods in a given program. A contract for a method C.m has the
following components:

Context clauses. 1. A heap precondition ϕm over �eld symbols for C; 2. a pa-
rameter precondition ψm over formal parameters of C.m; 3. a class postcon-
dition χm over formal parameters of C.m, �eld symbols for C, and the re-
served program variable \result ; 4. an interface postcondition ζm only over
the reserved program variable \result . All context clauses may also contain
constants and function symbols for �xed theories, such as arithmetic.

Context sets. The sets succeedsm, overlapsm ⊆ B.
Suspension contracts. For each suspension point j in m, a suspension contract

containing 1. a suspension assumption ϕj with the same restrictions as the

Asynchronous Cooperative Contracts 13

heap precondition; 2. a suspension assertion χj with the same restrictions;
3. context sets succeedsj, overlapsj ⊆ B.

Resolve contracts for each synchronization point named j in m: a set of method
names quali�ed with their class name: resolvedByj ⊆ C×M

Each run method has the contract ϕrun = ψrun = True and succeedsrun = ∅.
Methods without a speci�cation have the default contract ϕm = ψm = χm = ζm =
True and succeedsm = overlapsm = B. As its default contract, the main block can
only create objects. A method's entry and exit points are implicit suspension
points: the precondition then becomes the suspension assumption of the �rst
atomic segment, and the postcondition becomes the suspension assertion of the
last atomic segment. A suspension point may end in several atomic segments.

4.1 Method Contracts as Constraints over Traces

LetMm be the method contract for m. The semantics ofMm are four constraints
over traces (formalized in Defs. 5�7 below), expressing di�erent aspects of con-
tracts: (i) assert(Mm, tr) expresses that the postcondition and all suspension
assertions hold in tr ; (ii) assume(Mm, tr) that the precondition and all suspen-
sion assumptions hold in tr ; (iii) context(Mm, tr) that context sets describe the
behavior of the object in tr ; and (iv) resolve(Mm, tr) that methods resolving
futures adhere to the resolving contracts in tr . If the method name is clear from
the context, we writeM instead ofMm. All unbound symbols in the constraints,
such as f , e, X, etc., are implicitly universally quanti�ed.

De�nition 5 (Semantics of Context Clauses). Let Mm be a method con-
tract, tr a trace, and susp(m) the set of suspension points in m:

assert(Mm, tr) = ∀i ∈ N. evtr [i]
.
= futEv(X, f, m, e)→ Ctr [i] |= χm ∧ ζm

∧ ∀j ∈ susp(m). ∀i ∈ N. evtr [i]
.
= suspEv(X, f, m, j)→ Ctr [i] |= χj

assume(Mm, tr) = ∀i ∈ N. evtr [i]
.
= invREv(X′,X, f, m, e)→ Ctr [i] |= ϕm ∧ ψm

∧ ∀j ∈ susp(m). ∀i ∈ N. evtr [i]
.
= reacEv(X, f, m, j)→ Ctr [i] |= ϕj

The constraint context models context sets and is de�ned for both method
and suspension contracts. In contrast to context clauses, it constrains the order of
events belonging to di�erent processes. The constraint context(Sn, tr) formalizes
the context sets of a suspension contract Sn for suspension point n: Before
a reactivation event at position i in trace tr , there is a terminating event at a
position k < i on the same object from the succeeds set, such that all terminating
events on the object at positions k′ with k < k′ < i are from the overlaps set.

De�nition 6 (Semantics of Context Sets). Let Sn be a suspension contract,
tr a trace, and termEvent(i) the terminating event of i, where i may be either a
method name or the name of a suspension point. The predicate isClose(evtr [i])
holds if evtr [i] is a suspension or future event. The semantics of context sets of

14 Kamburjan, Din, Hähnle, Johnsen

a suspension contract Sn is de�ned by the following constraint context(Sn, tr):

∀i, i′ ∈ N.
(
evtr [i]

.
= reacEv(X, f, m, n) ∧ evtr [i′]

.
=suspEv(X, f, m, n)

)
→

∃k ∈ N. i′ < k < i ∧
(∨
j′∈succeedsn

evtr [k]
.
= termEvent(j′) ∧

∀k′ ∈ N. k < k′ < i ∧ isClose(evtr [k′])→
(∨
j′∈overlapsn

evtr [k′]
.
= termEvent(j′)

))

The predicate context(Mm, tr) for method contracts is de�ned similarly, but
includes an extra conjunction of the context(Sn, tr) constraints for all Sn inMm.

The constraint resolve expresses that for each synchronization point i, its
resolve contract Ri contains all methods that can resolve it: For every reaction
event on a future behind i, there must be a future event on that future which
terminates a method from resolvei.

De�nition 7 (Semantics of Resolve Contracts). LetMm be a method con-
tract, tr a trace, and resp(m) the set of resolve points in m. Then the resolve
constraint is de�ned as resolve(Mm, tr) =

∧
i∈resp(m) resolve(resolvei, tr), where

resolve(resolvei, tr) =∀j ∈ N. evtr [j]
.
= futREv(X, f, e, i)→

∃k ∈ N. k < j ∧ evtr [k]
.
= futEv(X′, f, m′, e)→

∨
m∈resolvei

m
.
= m

′

Context sets describe behavior required from other methods, so method con-
tracts are not independent of each other. Each referenced method or method in
a context set must have a contract which proves the precondition (or suspension
assumption). Recall that method names are names for the last atomic segment,
ϕi is the heap precondition/suspension assumption of atomic segment i and χi
is its postcondition/suspension assertion. The following de�nition formalizes the
intuition we gave about the interplay of context sets, i.e. that the atomic seg-
ments in the succeeds set establish a precondition/suspension assumption and
the atomic segments in overlaps preserve a precondition/suspension assumption.

De�nition 8 (Coherence). Let CNF(ϕ) be the conjunctive normal form of ϕ,
such that all function and relation symbols also adher to some theory speci�c
normal form. Let M be a set of method contracts. M is coherent if for each
method and suspension contract Si in M , the following holds:

� The assertion χj of each atomic segment j in succeedsi guarantees assump-
tion ϕi: Each conjunct of CNF(ϕi) is a conjunct of CNF(χj)

� Each atomic segment j in overlapsi preserves suspension assumption ϕi: sus-
pension assertion χj has the form χ′j ∧

(
({heap := heapOld}ϕi)→ ϕi

)
.

A program is coherent if the set of all its method contracts is coherent.

This notion of coherence is easy to enforce and to check syntactically.

Asynchronous Cooperative Contracts 15

1 class C(Int f, J o) implements I {

2 /∗@ requires f == 0;
3 @ ensures \result > i;
4 @ overlaps {};
5 @ succeeds {init}; @∗/
6 Int m(Int i) {

7 Fut<Int> ft = o!n();

8 /∗@ requires f >= 0;
9 @ ensures f == 0;

10 @ overlaps {up};
11 @ succeeds {}; @∗/
12 [atom: "susp1"] await ft?;

13 /∗@ resolvedBy {J.n}; @∗/
14 [sync: "sync"] Int j = ft.get;

15 return i + j + f;

16 }

17 }

18 interface I {

19 /∗@ requires i > 0;
20 @ ensures \result > 0 @∗/
21 Int m(Int i); }

22 interface J { Int n(); }

ϕm f == 0

ψm i > 0

ζm \result > 0

χm \result > i

succeedsm {init}
overlapsm {}
ϕsusp1 f >= 0

χsusp1 f == 0

succeedssusp1 {}
overlapssusp1 {up}
resolvesync {J.n}

Fig. 4. A method contract with naming conventions for contract components.

Lemma 1 (Sound Propagation [42]). Given a non-coherent set of method con-

tractsM , a coherent set M̂ can be generated fromM , such that for every contract
M∈M there is a M̂ ∈ M̂ with

∀tr .
(
assert(M̂, tr)→ assert(M, tr)

)
∧
(
assume(M̂, tr)↔ assume(M, tr)

)
∧
(
context(M̂, tr)↔ context(M, tr)

)
∧
(
resolve(M̂, tr)↔ resolve(M, tr)

)
Proof. To generate the coherent set, for every Si in M , the suspension assump-
tion ϕi is added by conjunction to the suspension assertion χj of each atomic
segment j in succeedsi, and ({heap := heapOld}ϕi)→ ϕi is added by conjunction
to χj of each atomic segment j in overlapsi. This obviously enforces coherence.
Coherence is only concerned with the precondition of atomic segments and the
postcondition of atomic segments in their context sets, thus the equivalences
hold. The implication of assert follows directly from the fact hat the added parts
of postconditions are added by a conjunction.

The requirement for M̂ ensures that the new, coherent contracts extend the
old contracts. In the border case where all context sets contain all blocks, all
heap preconditions and suspension assumptions become invariants.

4.2 On the Structure of Atomic Segments

Fig. 4 shows the speci�cation of method C.m and its components. Class C imple-
ments interface I and we omit the speci�cation and implementation of further
methods of I.

16 Kamburjan, Din, Hähnle, Johnsen

1 Unit m() {

2 s1
3 if (fl == 0) {

4 s2
5 await f?;

6 } else { s3 }

7 s4
8 }

m has three atomic segments:

s1 s2 await f?

s3 s4

s1 s3 s4

Fig. 5. Structure of atomic segments. The statements si contain no loops, conditionals,
or suspension statements.

The structure of atomic segments in a method may be more complex than
in Fig. 4. For example, in the presence of a conditional or loop between two
suspension points, a suspension assertion of a suspension contract speci�es the
condition at the end of multiple atomic segments. The set of atomic segments
of a method can be computed by generating all paths in the control �ow graph
that begin at the entry node or an await statement and end at an exit node or
an await statement. In our calculus we do not need to compute these atomic
segments explicitly, because that is implicitly achieved by symbolic execution.
Fig. 5 shows a method and its atomic segments. The postcondition of m describes
the state at the end of three atomic segments.

5 Veri�cation

Like in JML [45] method contracts appear in comments before their interface
and class declaration. Our speci�cations use DL formulas directly, extended with
a \last operator referring to the evaluation of a formula in the state where the
current method was last scheduled, i.e. the most recent reactivation or method
start. Restrictions on the occurrence of �elds and parameters are as above.

De�nition 9. Let str range over strings, ϕ over DL formulas, and m over
method names. The clauses used for speci�cation are de�ned as follows:

ISpec ::= /∗@ Require Ensure Runs @∗/ Spec ::= /∗@ Require Ensure Runs @∗/
ASpec ::= /∗@ Require Ensure Runs @∗/ GSpec ::= /∗@ Resolve @∗/
Require ::= requires ψ; Ensure ::= ensures ψ;

Runs ::= succeeds str; overlaps str; Resolve ::= resolvedBy m ψ ::= ϕ | \last(ϕ)

The parameter precondition and interface precondition are de�ned by ISpec
in an interface declaration. The heap precondition and class postcondition is
de�ned by Spec in a class declaration. The speci�cation at suspension points is
de�ned by ASpec, before the annotated atomic segment. The speci�cation for
get statements is de�ned by GSpec. We do not consider loop invariants here,
which are standard. For ghost �elds and ghost assignments, we follow standard
JML [45].

Asynchronous Cooperative Contracts 17

P2-Analysis

MHP/MHH

Dynamic Logic

resolve contracts

context sets

context clauses

& OKcollect propagate.abs ...
...

...

Fig. 6. Work�ow of the Veri�cation

5.1 Static Analysis

Our veri�cation approach uses MHP, MHH, and PT static analyses as explained
in Sect. 3. Their semantics is formalized using constraints. MHP and MHH guar-
antee the context constraint of a contract, while PT guarantees the resolve con-
straint. We use a sequent calculus to connect assert and assume constraints. Fig. 6
shows the overall work�ow.

Points-To Analysis. Given a program location k, PT returns a set p2(k) of
method names satisfying the constraint points(k, tr) de�ned as follows for each
trace tr of the analyzed program:

∀i ∈ N. evtr [i]
.
= futREv(X, f, e, k)→ ∃j ∈ N. j < i ∧

∨
m∈p2(k)

evtr [j]
.
= futEv(X′, f, m, e)

Lemma 2. For any named synchronization statement k the following holds: If
PT returns a subset of the resolving contract, then we can assume the resolve
constraint for the composition of any trace tr of the analyzed program:

∀tr . p2(k) ⊆ resolvek → (points(k, tr)→ resolve(resolvek, tr))

May-Happen-In-Parallel and Must-Have-Happened Analysis. Let Prgm
be a program. MHP returns a set mhp of pairs of block names (b1, b2), such that
the order of these blocks di�ers in some runs of Prgm, but the pre�x up to this
point is equal in both traces. We de�ne the constraint mayP(b1, b2) as follows:

∃i,j, k ∈ N.∃tr , tr ′. Prgm ⇓ tr ∧ Prgm ⇓ tr ′ ∧ act(evtr [i], b1) ∧ i < j ∧ act(evtr [j], b2)∧

act(evtr
′
[i], b2) ∧ i < k ∧ act(evtr

′
[k], b1) ∧ ∀l ∈ N. l < i→ evtr [l]

.
= evtr

′
[l]

where act(evtr [i], b)models that evtr [i] is activating atomic segment b, i.e. it is
invREv if b is the �rst block of a method, otherwise reacEv. Finally,mayP(MHP) ≡
∀(b1, b2) ∈ MHP. mayP(b1, b2).

The MHH analysis returns a set mhh of pairs (b1, b2) of block names. In
every run of Prgm, there is one execution of b1 before any execution of b2. The
de�nition of mustH(b1, b2) and mustH(MHH) follows a similar pattern as MHP.
Let mhp(b) (mhh(b)) be the maximal subset of mhp (mhh) such that each pair
has b as one of its elements.

18 Kamburjan, Din, Hähnle, Johnsen

Lemma 3. LetM be a method contract. If all sets {(b, b′) | b′ ∈ succeedsb} are
subsets of mhh(b) and all sets {(b, b′) | b′ ∈ overlapsb} are supersets of mhp(b),
then the context constraint holds for all traces.

∀b ∈ B. {(b, b′) | b′ ∈ succeedsb} ⊆ mhh(b) ∧ {(b, b′) | b′ ∈ overlapsb} ⊇ mhp(b)→(
∀tr .Prgm ⇓ tr →

(
mayP(MHP) ∧mustH(MHH)→ context(M, tr)

))
MHP (MHH) is used as a black box represented by mayP (mustH). The frame-

work can be extended to include other analyses or concurrency models, such as
scheduling policies or FIFO messaging.

5.2 Sequent Calculus.

The DL calculus rewrites a program formula [s;r]post with a leading statement
s into the formula [r]post plus suitable �rst-order constraints. Repated rule ap-
plication yields symbolic execution of the program in the modality. Updates (see
Sect. 4) accumulate during symbolic execution to capture state changes; for ex-
ample, [v = e; r]post is replaced with {v := e}[r]post, expressing that v has the
value of e during symbolic execution of r. When a program s has been com-
pletely executed, the modality is empty and accumulated updates are applied
to the postcondition post, resulting in a pure �rst-order formula that represents
the weakest precondition of s and post. Formulas are evaluated relative to a
variable assignment and a trace.

De�nition 10. Let tr be a trace and β an assignment for logical variables. The
evaluation function J·Ktr ,β maps DL formulas to truth values {tt,ff}.

The de�nition of the evaluation function can by derived from the one given
in [22] by using only the �nal con�guration of tr .4 We use a sequent calculus
to prove validity of DL formulas [4, 21]. In sequent notation pre → [s]post is
written as Γ,pre =⇒ [s]post, ∆, where Γ and ∆ are (possibly empty) sets of side
formulas. A formal proof is a tree of proof rule applications leading from axioms
to a formula (a theorem). A DL-based proof system for verifying class invariants
of ABS programs is available [22].

We formulate DL proof obligations for the correctness of method contracts.
Their soundness rests on the assumptions for the MHP, MHH, and PT analyses
spelled out in Lemmas 2 and 3. The DL sequent to be proven for a method m

with body s and contractMm as in Def. 4 has the form:

ϕm, ψm, wellFormed(trace) =⇒ {heapOld := heap}
{t := trace}{this := o}{f := f}{m := m}[s]χ̃m

(PO)

The heap and parameter preconditions ϕm and ψm ofMm are assumed when exe-
cution starts, likewise that the trace of the object up to now is well-formed. The

4 Technically, we extend traces to include con�gurations that issue no communication.
We omit details as all rules and cases are covered in [22].

Asynchronous Cooperative Contracts 19

(local)
=⇒ {U}{v := e}[s]χ
=⇒ {U}[v = e;s]χ

(�eld)
=⇒ {U}{heap := store(heap, f , e)}[s]χ

=⇒ {U}[this.f = e;s]χ

(async)

=⇒ {U}ψm(e)
fresh(f, t) =⇒ {U}{v:=f}{t := t · invEv(this, o, f, m, e)}[s]χ

=⇒ {U}[v = o!m(e);s]χ

(get)
fresh(r, t),

(∨
m∈resolve(i) ζm(r)

)
=⇒ {U}{v:=r}{t := t · futREv(this, f, r, i)}[s]χ

=⇒ {U}[[sync: "i"] v = f.get;s]χ

(await)

=⇒ {U}{t := t · suspEv(this, f,m, i)}χi
fresh(t, t) =⇒ {U}{t := t · suspEv(this, f,m, i)}{heapOld := heap}

{heap := heapA}{t := t · t · reacEv(this, f,m, i)}(ϕi → [s]χ)

=⇒ {U}[[atom: "i"] await f?;s]χ

Fig. 7. Selected DL proof rules.

class postcondition χ̃m is modi�ed, because \last is part of the speci�cation lan-
guage, but not of the logic: Any heap access in the argument of \last is replaced
with heapOld and \last is removed. Reserved variables t, this, f, and m record
the current trace, object, future, and method, respectively, during symbolic ex-
ecution. The above sequent must be proved for each method of a program using
schematic proof rules as shown in Fig. 7. There is one rule per statement kind in
Async. The rules for sequential statements are standard and omitted. To improve
readability, we leave out the sequent contexts Γ, ∆ and assume all formulas are
evaluated relative to a current update U representing all symbolic updates of
local variables, the heap, as well as t, this, f, m up to this point. These updates
are extended the premisses of some rules.

Rule (local) captures updates of local variables by side-e�ect free expressions.
Rule (�eld) captures updates of class �elds by side-e�ect free expressions. It is
nearly identical to (local), except the heap is updated with the store function.
Rule (async) for assignments with an asynchronous method call has two pre-
misses. The �rst establishes the parameter precondition ψm ofMm. The second
creates a fresh future f relative to the current trace t to hold the result of the
call. In the succedent an invocation event recording the call is generated and
symbolic execution continues uninterrupted.

Rule (get) introduces a fresh constant r representing the value stored in future
f. By Lemma 2 we can assume at least one of the interface postconditions of
methods in resolve(i) to hold5 for r. The current trace is extended with a future
reaction event.

Rule (await) handles process suspension. The �rst premise proves the post-
condition χi of the suspension contract Si in the current trace, extended by

5 We rule out the possibility that no suitable future was resolved and the current
process blocks, because our version of the DL rules is for partial correctness. Blocking
can be easily modeled by searching t for future events of methods in resolve(i).

20 Kamburjan, Din, Hähnle, Johnsen

a suspension event. When resuming execution we can only use the suspension
assumption ϕi of Si; the remaining heap must be reset by an �anonymizing
update� [4, 51] heapA, a fresh function symbol. Also a reaction event is gener-
ated. In both events f is not the future in the await statement, but the currently
computed future that is suspended and reactivated.

5.3 Soundness

Proving soundness follows a two-tier approach: First, we show that the rules
themselves are sound. Then, we show that if the static analyses succeed and all
proof obligations can be closed, each trace satis�es all constraints of all contracts.

We slightly modify the usual notion of rule soundness. To incorporate the
results of the static analyses, we restrict the traces we reason about to those
generated by the analyzed program: A rule is Prgm-sound if the premisses imply
the conclusion in every trace of Prgm.

De�nition 11 (Prgm-Soundness). Let Prgm be a program. A rule with pre-
misses P1 . . . Pn and conclusion C is Prgm-sound if for every β and every partial

trace tr of Prgm the following holds:
(∧

i≤nJPiKtr ,β
)
→ JCKtr ,β.

This relativized soundness notion is required to decompose program correct-
ness from the correctness of the auxiliary static analyses. It does not compromise
the modularity of our approach, because the veri�cation rules do not assume
anything about Prgm than its soundness relative to the results of the static
analyses. Relative soundness makes it possible to connect method contracts and
characterize them using the assert and assume constraints:

Lemma 4 (Contracts as Constraints). Let Prgm be a coherent program and

M̂ its method contracts. Let Mm ∈ M̂ . If (i) the PT, MHP and MHH analy-
ses succeed as described in Lemmas 2 and 3, (ii) for all traces tr of Prgm and

Mm′ ∈ M̂ \ {Mm} the constraint assert(Mm′ , tr) holds, and (iii) the proof obli-

gation (PO) forMm ∈ M̂ can be shown; then the following holds:

1. All rules in Fig. 7 are Prgm-sound if all rules in [22] are sound
2. ∀tr . Prgm ⇓ tr →

(
assume(Mm, tr)→ assert(Mm, tr)

)
As all analyses are described using constraints over traces, soundness can

now be stated as follows:

Theorem 1 (Soundness of Compositional Reasoning). Let Prgm be a pro-

gram, M its set of method contracts, and M̂ the coherent set of method contracts
from Lemma 1. If (i) the PT, MHP and MHH analyses succeed on M̂ as described

in Lemmas 2, 3 and (ii) for each Mm ∈ M̂ the proof obligation can be shown,
then the following holds for all tr with Prgm ⇓ tr :∧
Mm∈M̂

(
assert(Mm, tr) ∧ assume(Mm, tr) ∧ context(Mm, tr) ∧ resolve(Mm, tr)

)

Asynchronous Cooperative Contracts 21

6 Conclusion, Related and Future Work

This paper generalizes rely-guarantee reasoning with method contracts to active
objects with futures. This asynchronous setting challenges contract-based rely-
guarantee reasoning, compared to the well-known synchronous setting: The delay
between the invocation and activation of method calls means that preconditions
cannot solely be guaranteed at call time. Similar delays exist for interleaving
and method return. In addition, strong encapsulation means that preconditions
that depend on local �elds cannot be evaluated by the caller. These challenges
restricted previous work on veri�cation for active object languages to reason
about the preservation of monitor invariants. To overcome these challenges, we
separate the responsibilities of the caller and the callee by splitting the pre-
condition into a parameter precondition and a heap precondition, and likewise,
the postcondition into an interface postcondition and a class postcondition. The
parameter precondition and interface postcondition can expose the method im-
plementation. The heap precondition and class postcondition can be stronger
than a class invariant, because they do not need to be maintained by all meth-
ods. Instead, context sets are introduced to specify the methods that have to
establish or maintain the heap precondition. This separation of concerns entails
modularity and allows to propagate preconditions within a class without having
to access program-global information.

Related Work. Wait conditions were introduced as program statements (not
in method contracts) in the pioneering work of Brinch-Hansen [30, 31] and
Hoare [33]. SCOOP [8] explores preconditions as wait/when conditions. Pre-
vious approaches to AO veri�cation [20,22] consider only object invariants that
must be preserved by every atomic segment of every method. As discussed,
this is a special case of our system. Actor services [49] are compositional event
patterns for modular reasoning about asynchronous message passing for actors.
They are formulated for pure actors and do not address futures or cooperative
scheduling. Method preconditions are restricted to input values, the heap is spec-
i�ed by an object invariant. A rely-guarantee proof system [1, 39] implemented
on top of Frama-C by Gavran et al. [27] demonstrated modular proofs of par-
tial correctness for asynchronous C programs restricted to using the Libevent
library. Contracts for channel-based communication are partly supported by
session types [13,35]. These have been adapted to the active object concurrency
model [41], including assertions on heap memory [40], but require composition
to be explicit in the speci�cation. Stateful session types for active objects [40]
contain a propagation step (cf. Sect. 2.2): Postconditions are propagated to pre-
conditions of methods that are speci�ed to run subsequently. In contrast, the
propagation in the current paper goes in the opposite direction, where a con-
tract speci�es what a method relies on and one propagates to the method that
is obliged to prove it. Session types, with their global system view, specify an
obligation for a method and propagate to the methods which can rely on it.

Approaches to compositional speci�cation of concurrent systems which do not
follow rely-guarantee have been proposed. For example, Separation Logic [15,48]

22 Kamburjan, Din, Hähnle, Johnsen

separates shared memory regions and assigns responsibilities for regions to pro-
cesses. Huisman et al. [12,53] have used permission-based separation logic to ver-
ify class invariants in multi-threaded programs, using barrier contracts. Shared
regions [24] are related to heap preconditions and suspension assumptions in our
work, in the sense that a heap precondition is a region associated with a predi-
cate that must be stable. In contrast, context sets in our work describe precisely
when and by whom the predicate must be stabilized. Although approaches to
precisely specify regions have been developed [18, 24], their combination with
additional modes of interactions than heap accesses (such as asynchronous calls
and futures in our case) is not well explored.

Villard et al. [50] consider synchronous message passing in a setting where pa-
rameters are transmitted copyless and thus the heaps may leak. Kragl et al. [44]
address asychronous procedure calls in a multi-threaded concurrency model over
global state by identifying conditions for sequentialization such as commutativity
of atomic actions. They do not address futures and cooperative concurrency, and
their proof system is non-compositional, based on non-modular speci�cations for
complete programs. Kloos et al. [43] provide an analysis tool that infers types for
asynchronous tasks, but do not consider modular speci�cation. Compared to our
work, they focus on the correct usage of ownership types and heap invariants,
not on functional properties of single methods.

It is worth noting that active objects do not require the notion of regions
inside the logic, because strong encapsulation and cooperative scheduling ensure
that two threads never run in parallel on the same heap. What is achieved by
separation logic�separation of heaps�appears as a feature of the active object
concurrency model. An extension of our approach where separation logic is used
in preconditions is an interesting topic for future work that could address con-
currency models with asynchronous calls and futures/channels, but less strict
encapsulation. The Kappa type system [17] combines actors with ownership
capabilities to enable sharing of data between active objects with weaker en-
capsulation propetries [14]. There is currently no proof system for such active
object languages, which appear as an interesting application domain to integrate
separation logic in our context.

Future Work. The correctness of context set speci�cations may be inferred by
static analysis techniques such as May-Happen-in-Parallel [6]. Common features
of synchronous method contracts, such as termination witnesses [28] or excep-
tions [4] should be integrated. The exact relationship of the present work to
session types and regions ins separation logic remains to be formalized.

Asynchronous Cooperative Contracts 23

References

1. M. Abadi and L. Lamport. Conjoining speci�cations. ACM Trans. Program. Lang.
Syst., 17(3):507�534, 1995.

2. ABS Development Team. The ABS Language Speci�cation, Jan. 2018.
http://docs.abs-models.org/.

3. G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent object-
oriented programming. In Research Directions in Object-Oriented Programming,
pages 49�74. MIT Press, 1987.

4. W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt, and M. Ulbrich, ed-
itors. Deductive Software Veri�cation - The KeY Book - From Theory to Practice,
volume 10001 of LNCS. Springer, 2016.

5. E. Albert, F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa,
and P. Y. H. Wong. Formal modeling of resource management for cloud architec-
tures: An industrial case study using Real-Time ABS. Journal of Service-Oriented
Computing and Applications, 8(4):323�339, Dec. 2014.

6. E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin. May-Happen-
in-Parallel Analysis for Actor-based Concurrency. ACM Trans. Comput. Log.,
17(2):11:1�11:39, 2016.

7. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf Series. Pragmatic Bookshelf, 2007.

8. V. Arslan, P. Eugster, P. Nienaltowski, and S. Vaucouleur. SCOOP - concurrency
made easy. In Dependable Systems: Software, Computing, Networks, Research Re-
sults of the DICS Program, pages 82�102, 2006.

9. H. G. Baker and C. E. Hewitt. The incremental garbage collection of processes.
In Proceeding of the Symposium on Arti�cial Intelligence Programming Languages,
number 12 in SIGPLAN Notices, page 11, August 1977.

10. C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Lessons learned from micro-
kernel veri�cation � speci�cation is the new bottleneck. In F. Cassez, R. Huuck,
G. Klein, and B. Schlich, editors, Proc. 7th Conference on Systems Software Veri-
�cation, volume 102 of EPTCS, pages 18�32, 2012.

11. B. Beckert and R. Hähnle. Reasoning and veri�cation. IEEE Intelligent Systems,
29(1):20�29, Jan.�Feb. 2014.

12. S. Blom, M. Huisman, and M. Mihelcic. Speci�cation and veri�cation of GPGPU
programs. Sci. Comput. Program., 95:376�388, 2014.

13. L. Bocchi, J. Lange, and E. Tuosto. Three algorithms and a methodology for
amending contracts for choreographies. Sci. Ann. Comp. Sci., 22(1):61�104, 2012.

14. S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes, E. B. Johnsen, K. I.
Pun, S. L. Tapia Tarifa, T. Wrigstad, and A. M. Yang. Parallel objects for multi-
cores: A glimpse at the parallel language encore. In Formal Methods for Multicore
Programming - 15th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2015, Bertinoro, Italy,
June 15-19, 2015, Advanced Lectures, volume 9104 of LNCS, pages 1�56. Springer,
2015.

15. S. Brookes and P. W. O'Hearn. Concurrent separation logic. ACM SIGLOG News,
3(3):47�65, Aug. 2016.

16. D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic objects.
In Proceedings of the 31st ACM Symposium on Principles of Programming Lan-
guages (POPL'04), pages 123�134. ACM Press, 2004.

24 Kamburjan, Din, Hähnle, Johnsen

17. E. Castegren and T. Wrigstad. Reference capabilities for concurrency control. In
S. Krishnamurthi and B. S. Lerner, editors, 30th European Conference on Object-
Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of
LIPIcs, pages 5:1�5:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

18. P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. Tada: A logic for time
and data abstraction. In R. Jones, editor, ECOOP 2014 � Object-Oriented Pro-
gramming, pages 207�231. Springer Berlin Heidelberg, 2014.

19. F. de Boer, C. C. Din, K. Fernandez-Reyes, R. Hähnle, L. Henrio, E. B. Johnsen,
E. Khamespanah, J. Rochas, V. Serbanescu, M. Sirjani, and A. M. Yang. A survey
of active object languages. ACM Computing Surveys, 50(5):76:1�76:39, Oct. 2017.

20. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In
R. de Nicola, editor, Proc. 16th European Symposium on Programming (ESOP'07),
volume 4421 of LNCS, pages 316�330. Springer, Mar. 2007.

21. C. C. Din, R. Bubel, and R. Hähnle. KeY-ABS: A deductive veri�cation tool for
the concurrent modelling language ABS. In A. P. Felty and A. Middeldorp, editors,
Proceedings of the 25th International Conference on Automated Deduction (CADE
2015), volume 9195 of LNCS, pages 517�526. Springer, 2015.

22. C. C. Din and O. Owe. Compositional reasoning about active objects with shared
futures. Formal Aspects of Computing, 27(3):551�572, 2015.

23. C. C. Din, S. L. Tapia Tarifa, R. Hähnle, and E. B. Johnsen. History-based speci�-
cation and veri�cation of scalable concurrent and distributed systems. In M. Butler,
S. Conchon, and F. Zaïdi, editors, Proc. 17th International Conference on For-
mal Engineering Methods (ICFEM 2015), volume 9407 of LNCS, pages 217�233.
Springer, 2015.

24. T. Dinsdale-Young, P. da Rocha Pinto, and P. Gardner. A perspective on specifying
and verifying concurrent modules. Journal of Logical and Algebraic Methods in
Programming, 98:1 � 25, 2018.

25. C. Flanagan and M. Felleisen. The semantics of future and an application. J.
Funct. Program., 9(1):1�31, 1999.

26. A. Flores-Montoya, E. Albert, and S. Genaim. May-happen-in-parallel based dead-
lock analysis for concurrent objects. In FMOODS/FORTE, volume 7892 of LNCS,
pages 273�288. Springer, 2013.

27. I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis. Rely/Guarantee
Reasoning for Asynchronous Programs. In L. Aceto and D. de Frutos Escrig,
editors, 26th International Conference on Concurrency Theory (CONCUR 2015),
volume 42 of Leibniz International Proceedings in Informatics (LIPIcs), pages 483�
496, Dagstuhl, Germany, 2015. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik.

28. D. Grahl, R. Bubel, W. Mostowski, P. H. Schmitt, M. Ulbrich, and B. Weiÿ. Modu-
lar speci�cation and veri�cation. In W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle,
P. H. Schmitt, and M. Ulbrich, editors, Deductive Software Veri�cation � The KeY
Book: From Theory to Practice, pages 289�351. Springer, Cham, 2016.

29. R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems, 7(4):501�538, 1985.

30. P. B. Hansen. Structured multiprogramming. Commun. ACM, 15(7):574�578,
1972.

31. P. B. Hansen. Operating System Principles. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1973.

32. D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. SIGACT News, 32(1):66�69,
2001.

33. C. A. R. Hoare. Towards a theory of parallel programming. Operating System
Techniques, pages 61�71, 1972.

Asynchronous Cooperative Contracts 25

34. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

35. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, pages 273�284, 2008.

36. M. Huisman, W. Ahrendt, D. Grahl, and M. Hentschel. Formal speci�cation with
the java modeling language. In Deductive Software Veri�cation, volume 10001 of
LNCS, pages 193�241. Springer, 2016.

37. A. Je�rey and J. Rathke. Java jr: Fully abstract trace semantics for a core Java
language. In ESOP, volume 3444 of LNCS, pages 423�438. Springer, 2005.

38. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Ste�en. ABS: A core
language for abstract behavioral speci�cation. In B. K. Aichernig, F. de Boer, and
M. M. Bonsangue, editors, Proc. 9th International Symposium on Formal Meth-
ods for Components and Objects (FMCO 2010), volume 6957 of Lecture Notes in
Computer Science, pages 142�164. Springer-Verlag, 2011.

39. C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596�619, Oct. 1983.

40. E. Kamburjan and T. Chen. Stateful behavioral types for active objects. In IFM,
volume 11023 of LNCS, pages 214�235. Springer, 2018.

41. E. Kamburjan, C. C. Din, and T. Chen. Session-based compositional analysis for
actor-based languages using futures. In ICFEM, volume 10009 of LNCS, pages
296�312, 2016.

42. E. Kamburjan, C. C. Din, R. Hähnle, and E. B. Johnsen. Asynchronous coopera-
tive contracts for cooperative scheduling. Technical report, TU Darmstadt, 2019.
http://formbar.raillab.de/en/techreportcontract/.

43. J. Kloos, R. Majumdar, and V. Vafeiadis. Asynchronous liquid separation types. In
ECOOP, volume 37 of LIPIcs, pages 396�420. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015.

44. B. Kragl, S. Qadeer, and T. A. Henzinger. Synchronizing the asynchronous. In
CONCUR, volume 118 of LIPIcs, pages 21:1�21:17. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018.

45. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
P. Chalin, D. M. Zimmerman, and W. Dietl. JML Reference Manual, May 2013.
Draft revision 2344.

46. B. H. Liskov and L. Shrira. Promises: Linguistic support for e�cient asynchronous
procedure calls in distributed systems. In D. S. Wise, editor, Proceedings of
the SIGPLAN Conference on Programming Lanugage Design and Implementation
(PLDI'88), pages 260�267, Atlanta, GE, USA, June 1988. ACM Press.

47. B. Meyer. Applying �design by contract�. IEEE Computer, 25(10):40�51, Oct.
1992.

48. P. W. O'Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of the 15th International Workshop on
Computer Science Logic, CSL '01, pages 1�19, London, UK, UK, 2001. Springer.

49. A. J. Summers and P. Müller. Actor services - modular veri�cation of message
passing programs. In P. Thiemann, editor, Programming Languages and Systems
- 25th European Symposium on Programming, ESOP 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of LNCS,
pages 699�726. Springer, 2016.

26 Kamburjan, Din, Hähnle, Johnsen

50. J. Villard, É. Lozes, and C. Calcagno. Proving copyless message passing. In Z. Hu,
editor, Programming Languages and Systems, pages 194�209. Springer Berlin Hei-
delberg, 2009.

51. B. Weiÿ. Deductive veri�cation of object-oriented software: dynamic frames, dy-
namic logic and predicate abstraction. PhD thesis, Karlsruhe Institute of Technol-
ogy, 2011.

52. A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent pro-
gramming in ABCL/1. In Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA'86). Sigplan Notices, 21(11):258�268, Nov.
1986.

53. M. Zaharieva-Stojanovski and M. Huisman. Verifying class invariants in concur-
rent programs. In Fundamental Approaches to Software Engineering - 17th Inter-
national Conference, FASE 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, pages 230�245, 2014.

Asynchronous Cooperative Contracts 27

Appendix

A Full Example

The full, unspeci�ed code including of our running example is:

1 interface IPositive{

2 List<Rat> smooth(List<Rat> input, Rat a):

3 }

4 interface ISmoothing extends IPositive{

5 Unit setup(Computation comp);

6 Int getCounter();

7 List<Rat> smooth(List<Rat> input, Rat a);

8 }

9 class Smoothing implements ISmoothing {

10 Computation c = null;

11 Int counter = 1;

12 //@ ghost Bool lock = False;
13 Unit setup(Computation comp) {

14 c = comp;

15 }

16 Int getCounter() {

17 return counter;

18 }

19 List<Rat> smooth(List<Rat> input, Rat a) {

20 //@lock = True;
21 counter = 1;

22 List<Rat> work = tail(input);

23 List<Rat> inter = list[input[0]];

24 while (work != Nil) {

25 Fut<Rat> f = c!cmp(last(inter), work[0], a);

26 counter = counter + 1;

27 [atom: "awSmt"] await f?;

28 [sync: "sync"] Rat res = f.get;

29 inter = concat(inter,list[res]);

30 work = tail(work);

31 }

32 //@lock = False;
33 counter = 1;

34 return inter;

35 }

36 }

28 Kamburjan, Din, Hähnle, Johnsen

The fully speci�ed code is as follows. submin(input, i) returns the minimal
element of input up to position i. submax(input, i) returns the maximal element
of input up to position i. len(input) returns the length of input.

The loop invariant is

1 /∗@ loop_invariant
2 (\forall Int i; i >= 0 && i < length(inter); inter[i] > 0
3 && (\exists int min, max; min >= 0 && max >= 0
4 && min < length(input) && max < length(input)
5 && inter[i] <= input[max]
6 && inter[i] >= input[min]))
7 && \forall Int i; i >= 0
8 && i < length(work); inter[i] <= submax(input,i)
9 && inter[i] >= submin(input,i)

10 && length(work) + length(inter) = length(input)
11 && input != inter && input == \old(input);
12 decreases length(work);
13 @∗/

The speci�cation of the interfaces is

1 interface Computation{

2 /∗@ requires inew > 0 && iold > 0 && param > 0;
3 ensures \result > 0
4 && (iold >= inew −> (\result <= iold && \result >= inew))
5 && (iold <= inew −> (\result >= iold && \result <= inew));
6 @∗/
7 Rat cmp(Rat iold, Rat inew, Rat param);

8 }

9

10 interface IPositive{

11 /∗@ requires \forall Int i; 0 <= i < len(input) ; input[i] > 0 @∗/
12 List<Rat> smooth(List<Rat> input, Rat a):

13 }

14 interface ISmoothing extends IPositive{

15 /∗@ requires comp != null @∗/
16 Unit setup(Computation comp);

17 Int getCounter();

18 /∗@ requires 1>a>0 && len(input)>0;
19 ensures len(\result) == len(input) &&
20 \forall Int i; 0 <= i < len(\result);
21 \result[i] > 0 && min(input) <= \result[i] <= max(input);
22 succeeds {setup, smooth}; overlaps {getCounter}; @∗/
23 List<Rat> smooth(List<Rat> input, Rat a);

24 }

Asynchronous Cooperative Contracts 29

The speci�cation of the class is

1 class Smoothing implements ISmoothing {

2 Computation c = null;

3 Int counter = 1;

4 //@ ghost Bool lock = False;
5 Unit setup(Computation comp) { c = comp; }

6 Int getCounter() { return counter; }

7 /∗@ requires !lock && c!=null;
8 ensures !lock; @∗/
9 List<Rat> smooth(List<Rat> input, Rat a) {

10 //@lock = True;
11 counter = 1;

12 List<Rat> work = tail(input);

13 List<Rat> inter = list[input[0]];

14 while (work != Nil) {

15 Fut<Rat> f = c!cmp(last(inter), work[0], a);

16 counter = counter + 1;

17 /∗@ requires lock && c != null;
18 ensures True;
19 succeeds {awSmt}; overlaps {getCounter};
20 @∗/
21 [atom: "awSmt"] await f?;

22 /∗@ resolvedBy {Computation.cmp} @∗/
23 [sync: "sync"] Rat res = f.get;

24 inter = concat(inter,list[res]);

25 work = tail(work);

26 }

27 //@lock = False;
28 counter = 1;

29 return inter;

30 }

31 }

30 Kamburjan, Din, Hähnle, Johnsen

The fully speci�ed code after progapation, slightly simpli�ed, without context
sets and after moving the pre- and postcondition to the class, is:

1 class Smoothing implements ISmoothing {

2 Computation c = null;

3 Int counter = 1;

4 //@ ghost Bool lock = False;
5 /∗@ requires !lock &&comp != null @∗/
6 /∗@ ensures !lock && c!=null @∗/
7 Unit setup(Computation comp) { c = comp; }

8 /∗@ ensures \last(!lock && c != null) ==> !lock && c != null @∗/
9 Int getCounter() { return counter; }

10 /∗@ requires !lock && c!=null @∗/
11 /∗@ requires \forall Int i; 0 <= i < len(input) ; input[i] > 0 @∗/
12 /∗@ requires 1>a>0 && len(input)>0 @∗/
13 /∗@ ensures len(\result) == len(input) &&
14 \forall Int i; 0 <= i < len(\result);
15 \result[i] > 0 && min(input) <= \result[i] <= max(input); @∗/
16 /∗@ ensures !lock && c!=null @∗/
17 List<Rat> smooth(List<Rat> input, Rat a) {

18 //@lock = True;
19 counter = 1;

20 List<Rat> work = tail(input);

21 List<Rat> inter = list[input[0]];

22

23 while (work != Nil) {

24 Fut<Rat> f = c!cmp(last(inter), work[0], a);

25 counter = counter + 1;

26 /∗@ requires lock && c != null; @∗/
27 /∗@ ensures lock && c != null; @∗/
28 [atom: "awSmt"] await f?;

29 /∗@ resolvedBy {Computation.cmp} @∗/
30 [sync: "sync"] Rat res = f.get;

31 inter = concat(inter,list[res]);

32 work = tail(work);

33 }

34 //@lock = False;
35 counter = 1;

36 return inter;

37 }

38 }

Asynchronous Cooperative Contracts 31

B All Constraints and Examples

De�nition 12 (Semantics of Context Clauses). LetMm be a method con-
tract and tr a trace:

assert(Mm, tr) = ∀i ∈ N. evtr [i]
.
= futEv(X, f, m, e)→ Ctr [i] |= ζm ∧ χm

∧ ∀j ∈ susp(m). ∀i ∈ N. evtr [i]
.
= suspEv(X, f, m, j)→ Ctr [i] |= χj

assume(Mm, tr) = ∀i ∈ N. evtr [i]
.
= invREv(X′,X, f, m, e)→ Ctr [i] |= ϕm ∧ ψm

∧ ∀j ∈ susp(m). ∀i ∈ N. evtr [i]
.
= reacEv(X, f, m, j)→ Ctr [i] |= ϕj

De�nition 13 (Semantics of Context Sets). LetMm be a method contract,
Sn be a suspension contract, and tr a trace: The semantics of context sets of a
suspension contract Sn is de�ned by the following constraint context(Sn, tr):

context(Sn, tr) = ∀i, i′ ∈ N.
(
evtr [i]

.
= reacEv(X, f, m, n) ∧ evtr [i′]

.
=suspEv(X, f, m, n)

)
→

∃k ∈ N. i′ < k < i ∧
(∨
j′∈succeedsn

evtr [k]
.
= termEvent(j′) ∧

∀k′ ∈ N. k < k′ < i ∧ isClose(evtr [k′])→
(∨
j′∈overlapsn

evtr [k′]
.
= termEvent(j′)

))
The constraint context(Mm, tr) for the semantics of context sets in method con-
tracts is de�ned analogously:

context(Mm, tr) =
∧

n∈susp(m)

context(Sn, tr) ∧ ∀i ∈ N. evtr [i]
.
= invREv(X′,X, f, m, e)

→ ∃k ∈ N. k < i ∧
(∨
j′∈succeedsn

evtr [k]
.
= termEvent(j′) ∧

∀k′ ∈ N. k < k′ < i ∧ isClose(evtr [k′])→
(∨
j′∈overlapsn

evtr [k′]
.
= termEvent(j′)

))
De�nition 14 (Semantics of Resolve Contracts). Let Mm be a method
contract, tr a trace, and resp(m) the set of resolve points in m.

De�ne resolve(Mm, tr) =
∧
i∈resp(m) resolve(resolvei, tr), with

resolve(resolvei, tr) =∀j ∈ N. evtr [j]
.
= futREv(X, f, e, i)→

∃k ∈ N. k < j ∧ evtr [k]
.
= futEv(X′, f, m′, e)→

∨
m∈resolvei

m
.
= m

′

De�nition 15 (Semantics of Points-To). Given the name k of a program
location, the PT analysis returns a set p2(k) of method names that satisfy the
following constraint points(p2(k), tr) for each trace tr generated by the analyzed
program:

∀i ∈ N. evtr [i]
.
= futREv(X, f, e, k)→ ∃j ∈ N.

∨
m∈p2(k)

evtr [j]
.
= futEv(X′, f, m, e)

De�nition 16 (Semantics of MHP and MHF). Let Prgm be a program.
The MHP analysis returns a set MHP of pairs of block names (b1, b2), such that

32 Kamburjan, Din, Hähnle, Johnsen

there are two runs of Prgm, where the order of these blocks is di�erent, but the
pre�x up to this point is equal in both traces. We de�ne constraint mayP(b1, b2)
as follows:

∃i,j, k ∈ N.∃tr , tr ′. Prgm ⇓ tr ∧ Prgm ⇓ tr ′ ∧ act(evtr [i], b1) ∧ i < j ∧ act(evtr [j], b2)∧(
act(evtr

′
[i], b2) ∧ i < k ∧ act(evtr

′
[k], b1)

)
∧ ∀l ∈ N. l < i→ evtr [l]

.
= evtr

′
[l]

where act(evtr [i], b) models that evtr [i] is activating atomic segment b, i.e., it is
a invREv or reacEv, depending on whether b is the �rst block of a method or not.
Finally, mayP(MHP) = ∀(b1, b2) ∈ MHP. mayP(b1, b2).

The Must-Have-Finished (MHF) analysis returns a set MHH of pairs (b1, b2)
of block names, such that in every run of Prgm, there is one execution of b1
before any execution of b2. Predicate mustH(b1, b2) is de�ned as:

∀tr . Prgm ⇓ tr →
(
∀i.act(evtr [i], b2)→ ∃j < i. act(evtr [j], b1)

)
And mustH(MHH) = ∀(b1, b2) ∈ MHH. mustH(b1, b2). Let MHP(b) (MHH(b))
be the maximal subset of MHP (MHH) such that each pair has b as one of its
elements.

C Proofs

C.1 Proof for Lemma 4

We show Lemma 4 by showing (1) and (2) �rst. Property (3) follows from it.
The following Lemma states the soundness of the given proof rules and con-

nects the proof obligation with the constraints. We require for the soundness
of a �xed contract that the precondition, suspension-assumptions and resolving
contracts of other method contracts hold.

Lemma 5 (Soundness of Single Method Contracts). Let Prgm be a pro-

gram, M its set of method contracts and M̂ the coherent set of method contracts
from Lemma 1. LetMm ∈ M̂ be a method contract. If

1. the Points-to, MHP and MHF analyses succeed on M̂ as described in Lemma 2
and Lemma 3,

2. For every partial trace tr ' of Prgm and everyMm′ ∈ M̂ \{Mm} the assertion
constraint holds: assert(Mm′ , tr), and

3. all the other proof rules for statements are Prgm-sound [22].

Then the rules in Figure 7 are Prgm-sound.

Proof. The rule (return) is also shown to be sound in [22]. Rule (async) is shown to
be sound in [22] without the �rst premise.

Rule (get) is shown to be sound without the antecedent in the premise in [22].
It is thus only required to show that the antecedent holds in every partial trace.
Let i be a �xed annotation for some get statement. First, by (1), a future location
f only contains futures from methods in resolve(i).

Asynchronous Cooperative Contracts 33

Let tr be a partial trace of Prgm ending in a futREv event for the statement
annotated with i and β a variable assignment, such that the rest of the premise
holds. We must show that the following holds:

∀r. resolvedIn(r, tr , resolve(i))→

u

v
∨

m′∈resolve(i)

χ̂m′(r)

}

~

tr ,β

= tt

Where resolvedIn(r, tr , resolve(i)) models that r is the value of some resolved
future of a method in resolve(i) in tr . We are required to show that every exe-
cution where m has not yet been executed, preserves α. Thus, we proceed with
an induction on the number n of termination events in the trace tr :

Base Case n = 0. In this case there is no r with resolvedIn(r, tr , resolve(i)), we
can not execute a get statement and the program blocks. Note that we only
consider partial correctness.

Induction Step n = n′ + 1. I.e., there is a futEv for some method m′ ∈ resolve(i)
at position j for some future containing r within tr . W.l.o.g. we assume that
this position j is the last termination event in tr . By induction hypothesis:

∀r. resolvedIn(r, tr [1..j − 1], resolve(i))→

u

v
∨

m′∈resolve(i)

χ̂m′(r)

}

~

tr [1...j−1],β

= tt

By (2) we have closed the proof for all methods m′ with contracts Mm′ ∈
M̂ \ {Mm}. It remains to show that the proof for the contract of m′ implies
χ̂m′(r). The obligation has the form ϕ→ [s]χm′ , where s is the corresponding
method body. If the proof can be closed, than the last symbolic execution rule
is (return) and thus χm′ holds in the �nal state. Thus one of the χm′ formulas
holds for the value r. Note that the method body of m′ may also contain get

statements, we make a case distinction on the number m of futREv events in
tr [1...j − 1].
Case m = 0. In this case the fetch i is the �rst, thus we do not rely on the

soundness of (get) for the other contracts and the rule is sound.
Case m > 0. The previous rule applications of symbolic execution with (get)

correspond to execution steps within tr [1...j − 1], where by induction
hypothesis we can assume the above property holds - thus these rule
applications were sound and so is the last one.

(await) is proven analogously (with a common induction with rule (get)).

A direct consequence of Lemma 5 and the form of the proof obligation is the
following corollary, Lemma 4. We are thus able to abstract away from method
contracts and only reason about them in terms of their logical characterization
over traces.

Corollary 1. If the proof obligation for Mm ∈ M̂ can be shown, then the fol-
lowing holds:

∀tr . Prgm ⇓ tr →
(
assume(Mm, tr)→ assert(Mm, tr)

)

34 Kamburjan, Din, Hähnle, Johnsen

C.2 Proof for Theorem 1

Let Prgm be a program,M its set of method contracts and M̂ the coherent
set of method contracts from Lemma 1. If (1) the Points-to, MHP and

MHF analyses succeed on M̂ as described in Lemma 2 and Lemma 3
and (2) For each Mm ∈ M̂ the proof obligation can be shown then the
following holds for all tr with Prgm ⇓ tr :∧
Mm∈M̂

(
assert(Mm, tr)∧assume(Mm, tr)∧context(Mm, tr)∧resolve(Mm, tr)

)
Proof. We proof a slightly stronger statement for all partial traces of Prgm.∧
Mm∈M̂

(
assert(Mm, tr) ∧ assume(Mm, tr) ∧ context(Mm, tr) ∧ resolve(Mm, tr)∧

(
∀i ∈ N. evtr [i]

.
= invEv(X′,X, f, m, e)→ Ctr [i] |= ψm

))
We observe that the following holds by assumption (1):∧

Mm∈M̂

(
context(Mm, tr) ∧ resolve(Mm, tr)

)
Furthermore, by the restriction of the main block, each partial trace tr of runs
of Prgm has the form

tr = [(C0, invEv(main,X1, f1, run, ε), . . . , (C0, invEv(main,Xk, fk, run, ε)] ◦ tr ′

Induction on |tr ′|:

Induction Base tr ′ = ε: The assume and assert constraints hold as no event
of the correct form is in tr . The last part of the conjunction holds because
ψrun = True.

Induction Step tr ′ = tr ′′ ◦ [(C, ev)]: Case distinction on ev:

Invocation Event: I.e., ev = invEv(X′,X, f, m, e). We have to show that
C |= ψm(e). Let m

′ be the method which is active on X′ in C.
By assumption (2) the proof obligation of Mm′ has been proven. Thus
the statement v = e′!m′(e) has been symbolically executed by rule (async).
As the proof has been closed, the �rst premise has been shown.
Note that the �rst premise may rely on future reads before the asyn-
chronous call statement, and on the precondition of m′. This is covered
by the Prgm-soundness of (async), where we use the induction hypothesis
for assumption (2) of Lemma 5 and the Corollary 1. Thus C |= ψm(e)
holds.

Invocation Reaction Event: I.e., ev = invREv(X′,X, f, m, e). We have to
show that C |= ϕm ∧ ψm.

Asynchronous Cooperative Contracts 35

State Precondition As the speci�cation is coherent and by induction
hypothesis we can assume that there is C′ with C′ |= ϕm at some
pair (C′, ev) at position l in tr ′, where ev is either a suspension or
termination event. By assumption (1), that context holds in tr ′′ and
the object X was not active in tr [l..|tr |]. By a simple argument over
the semantics it holds that if an object is not active, than its state
does not change and C |= ϕm.

Parameter Precondition This case is analogous to the above, but we
use the additional conjunct of the stronger assumption.

Termination Event: ev = futEv(X, f, m, e). This case is analogous to the
Invocation Event case, except that the soundness of (return) is used.

Suspension Event: ev = suspEv(X, f, m, j). This case is analogous to the
Invocation Event case, except that the soundness of (await) is used.

Termination Reaction Event: I.e., ev = futREv(X, f, m, e). This case is
analogous to the Invocation Event case, except that the soundness of
(get) is used.

Reactivation Event: ev = reacEv(X, f, m, j). This case is analogous to the
State Precondition of the Invocation Reaction case, but requires addi-
tionally the soundness of (await).

