Semi-Dynamic Session-Types

for ABS

Bachelor thesis in Computer Science by Anton Wolf Haubner
Date of submission: 2019-11-08

1. Review: Prof. Dr. rer. nat. Reiner Hahnle
2. Review: Eduard Kamburjan, M.Sc.
Darmstadt —D 17

TECHNISCHE
UNIVERSITAT
DARMSTADT

Computer Science
Department
Software Engineering Group

Erklarung zur Abschlussarbeit
gemal §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Anton Wolf Haubner, die vorliegende Bachelorarbeit ohne Hilfe
Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle
Stellen, die Quellen enthommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder dhnlicher Form noch keiner Priifungsbehorde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Tauschungsversuch
vorliegt, der dazu fiihrt, dass die Arbeit mit 5,0 bewertet und damit ein Priifungsversuch
verbraucht wird. Abschlussarbeiten diirfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemaR §23 Abs. 7 APB {iberein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Planen.

Darmstadt, den 2019-11-08
A. W. Haubner

Contents

1. Introduction
1.1. Contribution of this Thesis
1.2. Structure of the Thesis
1.3. Notation

2. Background
2.1. Distributed Systems
2.1.1. Active Objects
2.1.2. Model of Concurrency . .
2.1.3. Non-Determinism
2.1.4. Dynamic Topology
2.1.5. Fairness
2.2. ABSlanguage
2.2.1. Layered Architecture . . .
2.2.2. Functional Layer

2.2.3. Object Model and Imperative Language

2.2.4. Concurrency Model
2.2.5. Model Simulation
2.3. Session Types
2.3.1. Global Session Types . . .
2.3.2. Object Local Session Types

2.3.3. Method Local Session Typeso oo v v v v v v ..

3. Concept
3.1. Tool Architecture

3.2. Configurable Session Type Validation
3.2.1. Formalization: Configurable Session Type Analysis

3.2.2. Participants Analysis . . .
3.2.3. Future Freshness Analysis

10
10
11
11
12
13
13
14
14
14
17
21
27
28
28
33
36

37
40
42
43
47
49

3.2.4. Actor Activity Analysis 51
3.2.5. Resolution Analysis 56
3.2.6. Combined Analysis 59

3.3, Projection e e e e e e e e 62
3.3.1. ObjectLocal Projection 62
3.3.2. Method Local Projection 66

3.4. Static Verification 75
3.4.1. Kernel Language it 75
3.4.2. Actor Representationin ABS 78
3.4.3. TypeSystem e 80
3.4.4. Additional Verification Steps, 89
3.4.5. Method-Local Soundness of our Type System 89

3.5. Dynamic Enforcement 91
3.5.1. Session Automataol 93
3.5.2. Automaton Generation e e e 98
3.5.3. Transformation into Symbolically Deterministic Automata 105
3.5.4. Summary of Automaton Generation Steps 107
3.5.5. ABS Compiler Modifications 107
3.5.6. Automaton Integration, 109
3.5.7. Limits of Schedulers 114
3.5.8. Global Soundness e 116

3.6. Liveness and Safety Considerations 116
3.7. Postconditions e e e e e e 120
3.7.1. Modified Session Type Syntax v v v v v v v v v .. 121
3.7.2. Changes to CST Validation, Projection and Automaton Generation . 121
3.7.3. ASTEXtensions o v i i vt ittt 122

4. Implementation 124
4.1. Toolsand Libraries e 124
4.2. Workflow e e 125
4.3. Session TypeParser. 127
4.4. Configurable Session Type Validation 128
4.5. Static Verification e 129
5. Evaluation 131
5.1. Example 1: Ordered Activations 131
5.2. Example 2: Heap Communication 134
5.3. Example 3: Notification Service 137

5.4. Performance Evaluation 139
5.4.1. Phase I. Varying Repetitions 141

5.4.2. Phase II: Await Statements v vt v et 145

5.4.3. Phase III: Delayed and Unordered Calls 146

5.4.4. Performance of More Complex Models 147

5.4.5. Summary e e e e e e e e e e 148

6. Conclusion 150
6.1. Related Work 151
6.2. Future Work e e 153
Bibliography 155
A. Tool Usage Instructions 162
B. Setup for Experiments 164
C. Plot Data 165
D. Algorithms 172
E. Examples 173
F. Code Listings 176
G. Miscellaneous 178
G.1. Allowed Pure Expressions In Postconditions 178
G.2. Used Librariesand Tools 179

H. Index of Figures, Tables, Etc. 180

1. Introduction

Distributed systems are omnipresent in the modern computing world. Their application
ranges from the small-scale, e. g. phones interacting with smart home devices, to the
processing of big data, which encompasses gathering information from distributed sites
and analyzing it in clusters.

Reasoning about distributed systems is difficult due to their concurrent and asynchronous
nature [10] and can incorporate a variety of questions: “Is the system deadlock free?”,
“What side-effects does an interaction have?” or “Does the system follow a certain com-
munication protocol?”. This thesis focuses on protocols which describe the structure of
interactions in a distributed system of active objects. This for example includes the or-
der of asynchronous calls between objects of the system, at what point a result has been
computed, a process been suspended or continued etc.

Manually checking a model of a distributed system against a protocol specification quickly
becomes too labor-intensive and time-consuming. Thus, the need for automatic verification
arises, which can reduce the workload and help to avoid human errors.

However, in a system where messages can arrive out of order, static verification is not
always enough to guarantee a system’s behavior follows a protocol. Also, if not all parts
of a system are previously known or behavior can be added during runtime, then these
unknown components may interfere with a protocol.

Our solution to these problems is to dynamically enforce protocol adherence at runtime.
This is achieved by adding schedulers to the objects of a system which allow only those
tasks to execute that do not violate the protocol.

1.1. Contribution of this Thesis

A concept for statically verifying the structure of communication between objects of a
distributed system and also enforcing it at runtime has been developed by Kamburjan,
Din and Chen in [30] for the ABS language [27].

This thesis aims to provide a first implementation of the concept by developing a tool on
top of the ABS compiler [44]. This tool takes an ABS model of a distributed system and a
protocol specification as input. The protocol specification is checked for errors using a new
method which has been inspired by Configurable Program Verification (Beyer, Henzinger
and Théoduloz [4]). The tool then statically verifies that each participating object of
the model locally conforms to the protocol specification. The model is also extended to
enforce the specification at runtime. The checked and extended model is then compiled
by the ABS compiler, which required minor adjustments to its Erlang [34] backend.

Furthermore, the thesis incorporates ideas from [29], which extends the protocol specifi-
cation to allow reasoning about side-effects of interactions. The tool developed during
this thesis verifies the specified side-effects at runtime.

Additionally, case studies are conducted to evaluate the concept. They answer questions
about the performance impact of the dynamic enforcement. Also, they are used to gain
confidence that our tool can reliably detect violations of a protocol and correct behavior
at runtime.

We call our developed tool in the remainder of this thesis the “Semi-Dynamic Session Type
Tool”, or SDS-tool in short.

1.2. Structure of the Thesis

Chapter 2 introduces some theoretical concepts and background information this thesis is
based on. This includes a definition of distributed systems, a description of session types
on which the specification language of protocols is based on and a short introduction to
the ABS language, which is the working environment of the developed tool.

In Chapter 3, the underlying concepts of validation, static verification and dynamic
enforcement of a protocol specification are elaborated on and discussed whereas Chapter 4
presents noteworthy implementation details.

Chapter 5 describes the case studies conducted to evaluate the resulting tool and reviews
the results.

Finally, Chapter 6 summarizes the thesis’s contents and results. It also contains a short
survey on related work and possible extensions of the thesis product.

1.3. Notation

Powerset We write 2° = {S’ | S’ C S} for the powerset of set S.

Functions The set of all total functions mapping elements of set S to set S’ is denoted
by S — S’. The set of all partial functions from S to S’ is denoted by S — 5.
f: S — 5 is an alternative notation for f € S — 5.

For the updated function of f where the output value of f is replaced with b for an
input a, we write f[a = b]:

flz) fzx#a
= b =
fla @) {b otherwise
If we want to update multiple output values in f : A — B we write f[S], where
S:A— Band

181 = (fF\{(a,) | (a,0) € SAY € BHUS

Abbreviations We sometimes replace parts of formulae and terms with the placeholder
symbols “...” and “” to abbreviate them if the concrete value of the replaced part
is of no special importance to a statement. In logical formulae, each occurence of
“.” may be rewritten with a previously unused, universally quantified variable. For
example,

Jz.(z,-) € R

can be rewritten as
Vy.dz. (z,y) € R

Grammars We notate grammars in the Extended Backus—Naur Form. Nonterminals are
enclosed in a box. Optional parts of a production are enclosed in square brackets
“[T]”. Parts which can either be omitted or repeated are annotated with a bar “7”.

= | term [optional] repeatable

In general, we will use “[...]” and “...” to mark optional or repeatable parts of
formulae, terms or code listings.

2. Background

2.1. Distributed Systems

Tanenbaum and Van Steen loosely define distributed systems in the following way [47]:

A distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system.

From this definition two characteristics of distributed systems arise:

1. There must be computing elements which are independent of each other. These can,
for example, be a number of processors connected by a network.

2. Ideally, these computing elements must interact with each other in a collaborative
way so that the user of the system does not notice that the system is distributed. For
our purposes, however, it is enough to require from a distributed system that there
are means of communication between the computing elements that allow them to
collaborate.

Now, there are different ways of abstractly modeling a distributed system, for example,
with varying computing elements (processes, actors, ...) or modes of communication
(message passing, shared memory, ...). Since the tool developed in this thesis operates on
models described in the ABS language, we adopt a characterization of distributed systems
based on active objects which is compatible with the concurrency model of ABS.

10

2.1.1. Active Objects

Active objects [7] are one possible model of computing elements in a distributed system
and a special case of the actor model [1] of concurrent computation.

Actors encapsulate an internal state and communicate via message passing. Computations
within an actor are always triggered as a response to a message. A computation can then
send messages to other actors, create additional actors and change the internal state of
its own actor to influence future behavior.

In the case of active objects, each active object defines the syntactic instructions for its
computations as a set of methods. Messages are implemented as asynchronous method
calls between the objects. Thus, active objects adjust the actor model to conform to
the object-oriented programming paradigm, making it more accessible to programmers
familiar with this paradigm and suitable for practical use in object-oriented languages
like ABS.

Please note, that we are using the terms active object and actor interchangeably in the
remainder of this thesis, since we are exclusively reasoning about distributed systems
where all actors are active objects. We denote the set of all active objects by Actors.
Variables p and ¢ usually range over Actors.

2.1.2. Model of Concurrency

Active objects execute concurrently, but within each active object, there is only one thread
of control. Also, since communication is asynchronous, the receiving actor of a method
call does not need to explicitly expect communication, for example by busy-waiting for
input on a channel.

This means, that if an active object is currently executing a computation, received asyn-
chronous method calls are buffered until the current computation concludes. Only then
can the next method be executed, occupying the single thread of control of the active
object.

Likewise, when issuing an asynchronous call, execution in an active object simply continues
without waiting for the result of the call. Instead, the asynchronous call produces a future
value (see below), which can be used to explicitly synchronize with the conclusion of a
call and to retrieve its result as soon as it is available.

1

Futures

Futures are a means of referencing the result of an asynchronous computation which may
not have finished execution yet.

There exist slightly different definitions of futures [6, 15], however, in the context of active
objects, a future is a placeholder value received upon calling a method asynchronously on
an object. In this context, a future is used primarily for two purposes:

1. to synchronize with the completion of the asynchronous computation referenced by
the future.

2. to retrieve the result of the asynchronous computation after it completed.

An explanation of the usage of futures as a feature of the ABS language is available in
Section 2.2.4. In the remainder of this thesis, we denote the set of all futures as F. The
set of symbols representing futures is denoted by F. Variables f, f’ etc. usually range
over F if not specified otherwise.

Cooperative Scheduling

Active objects can also support cooperative scheduling, as does ABS. This means that they
allow the interleaving of method executions, but only at explicitly marked suspension
points of a method. For example, those points are usually employed to wait until a future
can provide the result value of a call.

Therefore, due to cooperative scheduling, active objects select the next computation to
execute from a pool of not only asynchronous method calls, but also from suspended
method executions that can be continued.

This process of selecting a next computation and executing it is from now on called a
method activation. We call the initial activation of a method for a call a method invocation.
If an execution is activated again after it has been suspended, we say it is reactivated.

2.1.3. Non-Determinism

The order in which messages (method calls) arrive at an active object is arbitrary, as is the
order the active object will execute them on its single thread of control. This introduces a
source of non-determinism to a distributed system.

12

ABS gives the programmer the opportunity to gain back some control by allowing them to
optionally define so-called scheduling functions (see also Section 2.2.4). These functions
can deterministically choose the next method to execute from the currently possible (re-
)activations. The developed SDS-Tool makes heavy use of this feature of ABS to enforce
method ordering at runtime.

2.1.4. Dynamic Topology

As mentioned before, active objects may create other active objects. They may also
communicate references to active objects, which is like an address, messages (method
calls) can be sent to.

Therefore, a distributed system of active objects can at any time extend itself with new
active objects and reconfigure its topology.

2.1.5. Fairness

Agha [1] argues, that the weakest form of fairness in an actor based distributed system is
the guarantee of delivery of communications, that is, that every asynchronous method call
in a system of active objects will eventually be executed. However, since ABS allows for
arbitrary scheduling functions there is no such guarantee in our concept of a distributed
system.

Moreover, originally ABS does at least guarantee, that a method will be activated if
the active object is idle and method activations are available. But because our dynamic
enforcement of a protocol sometimes requires execution to wait until a specific method
activation is available, this behavior raises a problem. Therefore, ABS had to be modified
during this thesis, such that scheduler functions are able to refuse to select a method
activation, see Section 3.5.5.

Thus, there is in general no guarantee that any buffered activation in an active object will
be executed.

13

2.2. ABS language

ABS, the “abstract behavioral specification” language, has been designed for the purpose
of modeling object-oriented, distributed systems [27].

ABS tries to keep a balance between allowing to formalize high-level specifications of such
systems and the detailed description of their behavior so that the resulting models are
still executable.

Since the syntax, a type system and operational semantics have been formally defined
for ABS, it is also well-suited for developing formal methods tools, like verification soft-
ware [20]. Because this thesis is concerned with the development of a tool for verifying
interactions and enforcing protocols in a distributed system, ABS is thus a fitting imple-
mentation environment.

2.2.1. Layered Architecture

ABS is divided into a set of layers called Core ABS and a set of independent extensions.
Their combination is labeled Full ABS.

The layers of Core ABS each implement a different language concept, see Figure 2.1. For
example, the lower 4 layers contribute a programming language which encompasses
object-oriented, imperative and functional concepts and that is quite similar to Java.
Among other things, the remaining layers add on a concurrency model.

The following sections inform about those layers that are relevant to the thesis in more
detail. This mainly includes the concurrency model and a brief description of the pro-
gramming language.

2.2.2. Functional Layer

The functional layer of ABS consists of algebraic data types and first-order, as well as
second-order functions, called partially defined functions.

14

Product Line Real-Time ABS/ .
Engineerin Deployment Bugtime

g g ploy Components Full ABS
Languages Components

Behavioral Interface Specs Core ABS

Local Contracts, Assertions

Syntactic Modules Not relevant

Asynchronous Communication to thesis

Concurrent Object Groups (COGs)

Imperative Language
Object Model

Pure Functional Programs

Algebraic (Parametric) Data Types

Figure 2.1.: Layered architecture of ABS, image adapted from [20].

Algebraic Data Types (ADTs)

ABS provides a set of built-in data types which include among others Bool, Int, Float
and String.

It also allows the user to define algebraic data types (ADTs) using the data keyword.
Their constructors can take values of other types as parameters, see Listing 1, line 1. ADTs
can also be parametric, that is, they can be defined with a type parameter which can be
used in the type’s constructors, see Listing 1, line 2.

In addition to the built-in types, some utility ADTSs, like lists or maps (List<T>, Map<K, V>),
and functions to work with them are provided by a standard library.

1 data IntTree = IntLeaf(Int) | IntNode(Tree, Tree);
2 data GenericTree<T> = Leaf(T) | Node(Tree<T>, Tree<T>);

Listing 1: Example of user-defined type definition for tree structures.

15

Functions

Functions in ABS can take an arbitrary number of arguments and their body is an expression
from which their resulting value is computed upon invocation. ABS’s functions are pure,
which means that they can not have any side-effects on the model’s state and will thus
always return the same result given the same parameters®. Just like ADTSs, functions can
also be parametric to allow defining parameters of variable type.

Listing 2 gives two examples for function definitions and also showcases the destructuring
of values via pattern matching using the case expression. This is a common pattern when
working with ADTs.

def Int increment(Int x) = x + 1;

def Int countlLeaves<T>(Tree<T> tree) =
case tree {
Leaf(x) => 1;
Node(left, right) => countLeaves(left) + countLeaves(right);
i

Listing 2: Examples of function definitions. The second function is parametric and makes
use of the case expression.

As mentioned before, there are also second-order functions in ABS, which are called
partially defined functions. These can take first-order functions as parameters and are
useful for defining helper functions commonly used in functional languages, like map or
filter. The example in Listing 3 defines a filter function on the predefined list type
and demonstrates its use by passing an anonymous function as a parameter.

IThe random(Int) function, which returns a random integer is an exception to this rule.

16

def List<T> myFilter<T>(fun)(List<T> lst) =
case lst {
Nil => Nil;
Cons(head, tail) =»>
if (fun(head)) then
Cons(head, myFilter(tail))
else
myFilter(tail);
}

def List<Int> filterTheAnswer(List<Int> lst) =
myFilter((Int x) => x == 42)(1lst);

Listing 3: Example of a partially defined function and its application using an anonymous
function definition.

2.2.3. Object Model and Imperative Language

In addition to ADTs, ABS allows also defining interfaces similar to Java which can be
implemented by classes. However, classes do not define a type, therefore references to
objects can only be typed by an interface of their class.

Interfaces

Interfaces can declare signatures of methods, which includes their name, return type and
parameters. Methods can have the special empty return type Unit to indicate that they
do not return a value. Listing 4 gives an example of an interface definition.

interface Printer {
Bool preparePaper();
Unit write(String text);
Unit finalizePrint();

}

Listing 4: An example of an interface definition with 3 methods.

17

Classes

Class definitions in ABS contain field and method definitions?>. They can implement

multiple interfaces and must provide definitions for all of their method declarations.
However, classes can not inherit from each other.

In contrast to functions, which are defined by expressions, methods are defined using
an imperative language consisting of blocks of statements and control flow constructs.
However, within expressions, the imperative language can make full use of all features of
the functional layer.

See Listing 5 for an example of a class definition implementing the interface from Listing 4.
The listing also includes a so-called main block, to demonstrate the instantiation of an
object from the class definition. A main block is a program in the imperative language
that is run upon executing a model.

2Fields can also only be declared and initialized later during instantiation of a class, but we do not make
much use of this feature.

18

class HPOfficeJet implements Printer {
Int sheetsOfPaper = 42;

Bool preparePaper() {
return sheetsOfPaper > 0;
}

Unit write(String text) {
println(text);
}

Unit finalizePrint() {
sheetsOfPaper = sheetsOfPaper - 1;

}
}

// main block

{
Printer p = new HPOfficedet();

}

Listing 5: An example of a class implementing the interface of Listing 4 and a main block
instantiating the class.

Modules

ABS requires source code to be organized in modules with identifying names so that the
contents of another module can be imported by its name. See Listing 6 for an example.

A module can contain all of the aforementioned ABS language features, as illustrated in
Figure 2.2. However, there can only be one main block per module. If there are multiple
modules with main blocks, one needs to be selected when executing the model.

19

ABS Model

Module 1 Module 2

Data Types

Functions

Interfaces

Classes

Main Block

Figure 2.2.: Illustration of the structure of an ABS model specification.

20

module Printers; // module declaration
export Printer, HPOfficedet;

interface Printer {
//
}

class HPOfficeJet implements Printer
//
}

/...
module Main; // This can also be placed in another file

import * from Printers;

{
Printer p = new HPOfficedet();

/1

Listing 6: Example usage of the module system. In this code snippet, modules Printers
and Main are created and the contents exported by Printers imported into Main.

2.2.4. Concurrency Model

Section 2.1 already hints at the concurrency model of ABS since the particular flavor of
distributed systems ABS can describe is based on the same principles. This section now
aims to give a more detailed account of ABS’ concurrency model.

The concurrency model of ABS has been formalized in [27]. This supports its goal to
ease the development of automated analysis and verification software. In ABS, so-called
Concurrent Object Groups (COGs) are the language’s source of concurrency. Each COG has
a single thread of control and all COGs execute in parallel. Within a COG, ABS differs
from main-stream languages like Java or C most prominently in the fact, that there is no

21

preemptive scheduling. This means, that the execution of a method can not be interrupted
at any moment to execute another method. Instead, ABS employs cooperative scheduling,
which allows the programmer to release control by explicit statements at specific points
or not at all.

Since it eliminates data races, cooperative scheduling makes it much easier for the pro-
grammer, but also for automated tools like the one developed in this thesis, to reason
about a program with concurrently executing elements.

The following subsections now elaborate on the mentioned components of the concurrency
model in more detail.

Concurrent Object Groups

By default, each object instantiated by the new expression and the main method have
their own COG. An object can, however, be instantiated as part of the same COG as its
creator when using the special new local expression.

Each object of a COG is associated with a pool of possible method activations. Initially,
the pool is empty and the single thread of control executes an optional init block which
can be defined for a class. As soon as a method is called asynchronously on a member of a
COQG, its activation is added to the COG’s pool.

If the COG’s thread of control is idle, one activation can be selected from the pool and
executed on the single thread until it finishes or suspends execution due to cooperative
scheduling. In the latter case, its reactivation at the suspension point is put back into the
pool.

Scheduling Functions

From the above description of COGs, the question remains, how a method activation is
selected from a pool. The actual definition of this selection method is left open by the
ABS formalization [27], however, it is possible for the programmer to provide an imple-
mentation, called a User-defined Scheduling Function. User-defined Scheduling Functions
are a part of Real-Time ABS and have been introduced by Bjgrk et al. in [5].

A User-defined Scheduling Function, in short, a scheduling function, is defined just like any
other function in ABS, but its signature must follow these restrictions:

1. its return type must be of the type Process

2. its first argument, we call it queue, must be typed List<Process>

22

The intention behind this signature is that the scheduling function takes the current pool
of possible method activations as input, decides which activation to execute next by a
custom algorithm and then outputs its choice. Please note, that scheduling functions are
therefore called only with non-empty pools.

To make use of a scheduling function, classes can be annotated with its name (see Listing 7)
so that all COGs resulting from instantiating the class must use it to select the next possible
method activation.

def Process scheduler(List<Process> queue) = head(queue);

[Scheduler: scheduler(queue)]

class HPOfficeJet implements Printer
//

}

Listing 7: Definition and use of a User-defined Scheduling Function scheduler on a class
HPOfficedJet. It always selects the first method activation from the pool of possible
activations. The parameter passed in the annotation must be named queue.

Obviously, more complicated scheduling functions need some information about the
possible activations and perhaps the object context they are executed in to make a decision.
Firstly, the Process objects within the pool provide data about a method’s name and
invocation time. Secondly, the values of the annotated class’s fields can be passed as
additional parameters. See Listing 8 for an example.

23

def Process scheduler(List<Process> queue, Bool preferFoo) =
case (queue) {
Cons(p, Nil) => p;
Cons(p, ps) =>
if (preferFoo && method(p) == "foo") then

p
else

scheduler(ps, preferFoo);

s

[Scheduler: scheduler(queue, preferFoo)]
class C implements I {
Bool preferFoo = True;

Unit foo() { /> ... */ }
Unit bar() { /* ... %/ }
}

Listing 8: Example of a scheduling function which tries to always execute the method foo,
given its activation is in the current pool and its object set the boolean flag preferFoo.

Calls

In ABS, the fields of an object are not directly accessible by other objects. Thus, the only
means of communication between objects are synchronous and asynchronous method
calls.

Asynchronous Calls An asynchronous call is an expression of the form

o!'m(p@, p1, ..., pN)

where
* 0 is a pure expression evaluating to an object,
* m is the identifier of a method of one of the object’s interfaces

* p@, p1, ..., pN are pure expressions typed in the same way as the N parameters
of method m.

24

After an asynchronous call, execution of the calling method immediately continues.
Instead of directly executing m, a corresponding method activation is added to the
pool of the COG of o. Thus, the called method will only be executed when it gets
scheduled for execution in this COG.

The call expression resolves to a future value of type Fut<T>, where T is the return
type of the called method. See also the subsection regarding ABS’s future values
below.

Synchronous Calls A synchronous call is an expression of the form

o.m(po, p1, ..., pN)

with the same meaning for the symbols o, m, po, p1, ..., pN as above.

Depending on whether o is in the same COG as the object of the calling method, a
synchronous call has slightly different effects:

Case: o is in the same COG In this case, execution directly progresses with the
called method. After the called method finishes, it continues with the remaining
statements of the calling method, where the call expression is resolved to the
result returned by the called method.

Case: o is in a different COG Here, the synchronous call is equivalent to an asyn-
chronous call and a suspension of execution of the own COG until the call is
resolved.

Therefore, the synchronous call can be equivalently rewritten as an expression
result with the following block of statements prepended:

Fut<T> f = o!'m(p1, p2, ..., pN);
T result f.get;

T is the return type of m. For an explanation of the get expression and Fut
type, see the next subsection.

25

Futures

In ABS, as explained above, asynchronous calls return future values, see also Section 2.1.2.
Those values are of the parametric type Fut<T>, where T is the return type of the method

from which the future has been created.

The future value can be treated like any other data value, however, it provides two

additional uses:

1. it can be used for cooperative scheduling to suspend execution until the asynchronous
method execution it refers to finishes. This can be achieved using the Await State-
ment or Await Expression. For more information on those, you may consult the next

section.

2. it can be used to retrieve the result of the asynchronous computation using a Get

Expression.

A Get Expression is of the form f . get, where f is a pure expression which evaluates

to a future value. When a Get Expression is evaluated, it blocks all execution in

its

COG until the asynchronous computation finishes and its result is available. It then

resolves to this result.
See Listing 9 for a demonstration of both use cases.
I p=new C();
Fut<Int> f = p!foo(); // Make asynchronous call

// resume execution...

// As soon as the result of foo() is needed, suspend execution
// until it is available.
await f?;

// Retrieve the result using a Get Expression

Int result = f.get;
println(toString(result));

Listing 9: Typical usage example of a future value.

26

Cooperative Scheduling Elements

The following statements and expressions can be used by the programmer to deliberately
suspend execution, usually until a certain condition is met:

Await Statement The await statement suspends the execution of a method until a certain
guard condition is met:

As soon as the guard condition is met, the execution can be reactivated. The guard
condition expression can be any pure expression, the identifier of a future or a
conjunction of guard condition expressions. If the condition expression is a future
identifier, then the guard is fulfilled, as soon as the computation referenced by the
future has finished execution:

= [pure expression] | [future identiﬁer]? | (Guard]&[Guard]

AwaitExp The await expression await <Asynchronous Call> is equivalent to the
expression X after executing the following statements:

Fut<T> f = <Asynchronous Call>;
await f?;
T x = f.get;

Unconditional Suspend The suspend statement suspends the execution of the current
method without any required condition for it to be resumed.

2.2.5. Model Simulation

The ABS tooling provides multiple so-called backends for translating an ABS model into an
executable (programming) language so that its execution can be simulated by compiling
and running the resulting code.

At the time of writing this thesis, there are backends for producing code in the languages
Java, Haskell, Erlang and the rewriting logic Maude in different stages of completeness.

One of the goals of this thesis is the dynamic enforcement of behavior encoded by a
protocol onto a simulated ABS model, which requires the use of scheduling functions

27

(see Section 2.2.4). Right now, only the Erlang and Maude backends support scheduling
functions.

Because some changes to future types and scheduling functions are applied to ABS during
this thesis, they need to be reflected on the backend implementations, but due to the time
constraints applying to this thesis we focus only on the Erlang backend.

However, the necessary changes to the Erlang backend are minor and do not require
knowledge about the Erlang language of the reader.

2.3. Session Types

As pointed out in Section 2.1, distributed systems as a user application require the system’s
components to communicate in a structured fashion. Such a ”structure” can encompass
not only the nature of interactions, but also their order, as well as repeated or alternative
interaction sequences. A closed unit of such a communication is called a session [21].

If an implementation of a distributed system does not adhere to its intended communication
structure, this will likely cause failures in the user application. Thus, a formal specification
language for a session is desirable, since it allows the analysis of a distributed system in
regard to a specification and may also aid its systematic development. Multiparty session
types [21] are such a specification language. Originally, multiparty session types were
intended to specify sessions in distributed systems with channel-based communication, as
produced by the m-calculus. However, Kamburjan et al. [30] extended the session type
notation so that they are suited for the concurrency model of ABS. Therefore, we make
use of their approach on session types in this thesis.

2.3.1. Global Session Types

We call a session type specification language of the behavior of all objects of a session a
global session type, since it operates from a global point of view. In our concurrency model
of active objects, we want global types to capture the following aspects of communication
and cooperative scheduling:

1. What kind of messages do active objects communicate between each other, i.e.
which methods are called by whom on what object?

28

How are these interactions ordered?

What alternative interaction sequences are allowed?

Which parts of the interaction can be repeated?

At what point in the session has a method execution to be finished?

When are method executions suspended to wait for others?

N o v A Wb

When does an object try to retrieve the result of a call?

Aspects 1-4 allow reasoning about basic properties of structured communication, whereas
aspects 5-7 cover details of the concurrency model of active objects. These are also
relevant to communication, for example, the result of a call may only be retrieved, after
its execution finished.

Of course, even more properties can be specified using session types, e. g. Kamburjan et
al. [29] extended them to capture semantics of method calls by allowing to annotate calls
with pre- and postconditions on their object’s state. We also incorporate this idea on a
smaller scale into our session type language at a later point in this thesis, see Section 3.7.

Syntax

From the need to specify aspects 1-7, the following syntax for a global session type, as
introduced by Kamburjan et al. [30], arises:

= Oi>p:m | .
= phgm | pLA©] | 1 FUC) | Rellp, f) | Skip | p{(E@)ier | (B)

The symbols p and ¢ range over identifiers of active objects, m ranges over method
identifiers, f over futures, and C over ABS ADT constructor names. As evident by the
above grammar, a session type can be a concatenation (G.G’) of other session types. If
a part of a session type is optional, but its presence or absence is of no consequence to
a statement, we write the optional part in square brackets, e.g. p | f [(C)]. Please note,
that contrary to the session types of [30] our types do not encompass an end type which
denotes termination. In our thesis, termination is implied by the syntactical end of a
session type instead.

29

We denote the set of all global session types by G and its elements typically by lowercase
g for non-concatenated and uppercase G for concatenated types. If a type g is part of a
concatenated type GG, we say g is a component of G. We call all types which contain no
further nested types atomic session types. The set of atomic global session types is

Gatomic = {0 L p:mop L g mp L fop L £(C).p 1 f,p 1 f(C),Rel(p, f), Skip |
f € F Ap,q € Actors A m € Methods A C'is ABS ADT constuctor}

Definition 2.3.1 (Scope). Futures are introduced by the types 0 ERN q: mand p EN q: m.

If a future f is introduced in a concatenated type G.(-) ER q: m.G’, then we call (-) ER

q: m.G' the scope of f.

Informal Semantics

f . . '
0 — p: m denotes the start of a session and is always the first component of a complete
and valid type. It signifies that method m of actor p is called and f is the future
representing the resulting computation.

p 1 q: m symbolizes that actor p calls method m on an actor ¢. The future produced by
this call is f. We say “p interacts with ¢ by calling m”.

p | f[(C)] expresses that the actor p finishes the computation referenced by future f.
The (C) part is optional and designates that the resulting value of the computation
has been created by applying the data constructor C. We say “p resolves f (with
).

p T f[(C)] conveys that actor p “fetches” the result of the computation represented by
future f. Similar to the above type, (C) is optional and declares that the result has
been constructed with constructor C.

Rel(p, f) denotes that the future currently active on actor p suspends its execution
until future f has been resolved. During this suspension, other executions may
be activated. We say “p releases control until f is resolved.” Please note, that the
fetching type p 1 f [(C)] above does not imply a release of control, even if the result
of the fetched future f has not been computed yet. This is because we will be
applying these types to ABS models where reading the result of an unfinished future
blocks execution of the whole COG until f has finished.

Skip signifies no action.

30

P {(Gi)ie I} expresses that there are |/| different branches the session can continue with
and actor p chooses which branch is taken. Each GG; encodes one possible branch.

(G)™ expresses that the part of the behavior specified in G' may take place zero or more
times.

Example 1: Mail Notifications

Imagine a mobile mail application which comes with a notification service that informs
the user about new mail as soon as it is available. The following global session type
specifies the notification service’s communication protocol with the mail server and the
system’s user interface:

0 f—0> NotificationService: init. D
(
NotificationService f—1> MailServer: checkMail.)
Rel(NotificationService, f1). 3

MailServer | fi (NewMail).
NotificationService 1 f; (NewMail).

NotificationService 2 ur. popup.
ULl fo,
MailServer | fi (NoMail).
NotificationService T f; (NoMail)
)" 5)
NotificationService | fy

MailServer

4)

After the notification service has been initialized (line 1) it queries the mail server
whether there has new mail arrived yet (line 2) and waits for an answer (line 3).

The mail server can now deliver different answers by resolving the future f; which has
been produced by the query with different constructors. It can either answer that there
is new mail to be retrieved, as in the first case of line 4, or it can state that there is no
new mail, as in the second case. After reading the answer, the service will render a
notification in the UI to inform the user about new mail but only in the first case.

31

Since the service needs to check for new mail regularly, the interaction with the mail
server can repeat indefinitely (line 5).

Self-Containedness

As mentioned, session types can specify actions which can be repeated an unspecified
number of times, or not take place at all. However, some actions can not be repeated in

an ABS model. Others must be executed at least once for the remaining specification to
be valid.

Example: Resolving in a loop
The following session type specifies, that future f gets resolved potentially multiple
times. However, a computation can finish only once:

G D e

Also, it would have to be resolved at least once so that ¢ can fetch the result in the
second part of the type.

To avoid types which describe impossible systems, we require repeated types to be self-
contained. Formalizing and checking the requirements of self-containedness is one concern
of our Configurable Session Type Validation, see Section 3.2.

Formal Semantics

We only give a brief overview of the formal semantics of session types. An in-depth
formalization of the semantics by E. Kamburjan can be found in [28] for an almost
identical definition of session types. We apply these formal semantics when discussing the
soundness of our verification system in Sections 3.4.5 and 3.5.8.

E. Kamburjan defines histories of so-called communication events which are produced by
the execution of an ABS model. These events describe operations on futures, like a call, an
activation of a method, the suspension of a computation, etc. For example, the following
history expresses that a method m; of an object o, is being called, activated and resolved.
Then the same happens for a method ms of an object os:

Pexample = [INVEV(0o, 01, f1,m1,e1),INVREV(0p, 01, f1,m1, e1), futEv(or, f1,m1, e1),
iNVEV(0o, 02, f2, ma2, e2),INVREV(0p, 02, f2, m2, e2), fUtEV(02, f2, M2, €2)]

32

If we filter out the events produced by a specific object o or future f from a history h, we
say h is projected onto o or f. For this we write h [0 and h | f respectively:

hexample | 01 = [INVEV(0g, 01, f1,m1, e1),INVREV(0g, 01, f1,m1, €1), futEv(or, f1,m1, e1)]

The formal semantics of a session type G are defined as a regular expression 7(G) describ-
ing a language of communication event histories. For example:

(0L 0: m.o L m) = [iNVREV(0, 0, f,m, £)] o [futEv(o, f,m, null)]

A history h produced by executing an ABS model is captured by a global session type if
there is some future-equivalent®permutation 4’ of k in its language. When comparing
h against permutations, we ignore concrete parameters and return values encoded in a
history. Also, we exclude permutations where the order of events has been changed from
the perspective of individual objects. That is we require h [o = h’ [o for all objects o.

The formal semantics of local session types (see below) are analogously defined as regular
expressions.

2.3.2. Object Local Session Types

A global type specifies a session between multiple collaborating parties of a distributed
system. To statically verify that the behavior of a program implementing the system
conforms to a global session type, Honda et al. developed a process called Projection which
allows extracting a specification of the behavior of a single party from the global type [21].
This local session type could then be used to perform verification for every party one at a
time.

In the context of a concurrency model using active objects, Kamburjan et al. differentiate
two kinds of local types, object local session types and method local session types [30].
Object local types describe a session from the view of a single active object and are thus
useful for deriving scheduling strategies for an object, see Section 3.5.

3A history h is future-equivalent to another history A’ if there is a renaming of futures in so that it is equal
to h'.

33

Syntax

As with global types, we employ the syntax introduced by Kamburjan et al. in [30] for
object local types:

s= (1L[L]

i= 07m | p?ym | plem | Putf[(C)] | Get f[(C)] | React f

| Await(f, ') | Skip | ®{(Lilbier | &p{(Lilbier | (L))

We denote the set of all object local session types by £, non-concatenated object local
types by lowercase [and concatenated types by uppercase L.

Informal Semantics

In the following informal description of the semantics of an object local session type, we
refer to the active object whose behavior is specified by the type by gq.

07 ym expresses that at the start of the session, the active object ¢ to which this type
belongs, is called on method m, producing future f.

p?ym denotes that ¢ is called on method m by actor p, producing future f.

p!ym symbolizes that ¢ calls method m on actor p, producing future f.

Put f [(C)] signifies ¢ finishes the computation referenced by future f and creates its
return value using ADT constructor C. Again, the (C') part is optional.

Get f [(C)] conveys that g “fetches” the result of the computation represented by future
f, which was constructed using C'. Specifying (C) is optional.

Await(f, f’) denotes that the future f, which refers to an active computation in ¢,
suspends its execution until the future f’ has been resolved.

React f expresses that a suspended future f of ¢ resumes its execution.

Skip signifies no action.

34

@ {(Li)icr} expresses that there are |I| different branches the session can continue
with and a computation in ¢ actively chooses which branch is taken. For example,
the computation could call different actors in each branch or have different return
values, which are read by another actor and influence its behavior. Each L; encodes
one possible branch.

&y {(Li)ie I} again expresses that there are different branches in the session. However,
which branch is taken is not decided by ¢ but by the computation referenced by
future f. We say “q offers choices (L;);cr to f.”

(L)* denotes that the part of the behavior specified in L may take place zero or more
times.

Example 2: Mail Notifications (Part 2)
Looking back at the mail application scenario from Example 1, the behavior of the mail
server could be captured by an object local session type like this:

NotificationService? y, checkMail. D

Put f; (NewMail) @
Put f; (NoMail) |~

)*

Please note that the type has no notion of the actions of actors other than the mail
server, except for the times when they are directly communicating with it. This is the
case here when the mail server receives a call from the notification service in line 1.
Line 2 makes use of the Choice Type @ {. ..}, since the mail server actively chooses how
the protocol progresses. Correspondingly, the same section of a local type describing
the notification service would need to use the Offer Type &y, {...} instead since the
service’s behavior depends on the return value of f;.

35

2.3.3. Method Local Session Types

Method local types describe the behavior of individual methods and are thus useful for
checking ABS programs method by method against a session type specification. Whereas
Kamburjan et al. also employed the existing syntax of object local session types for method
local types [30], we are going to introduce a separate, slightly changed syntax.

Our motivation for this is to simplify the static verification process by...

1. ...removing types that are not explicitly represented in the AST of a method. That is
07 sm and p?m, which always correspond to the beginning of a method. The type
React f is thus also removed since it signifies the completion of await statements,
which are already described by the Await(f, ') type.

2. ...having Offer Types &; {...} directly label every branch with constructor names
corresponding to the different return values of the choosing future f. If a method’s
behavior branches depending on a return value, the static verification process needs
to know which branch corresponds to which constructor label. Having explicit
labels eliminates the need to inspect the branches for Get f (C) types from the static
verification process.

Syntax

= (m)[(M]

= plym | Put f[(C)] | Get f[(C)] | Await(f, f’) | Skip

| @{(MiJlier | &p{Ci:(Milbier | (M)

We denote the set of all method local session types by M, and its elements by uppercase
M.

Since the informal semantics of method local types are the same as of object local session
types, we just like to reference Section 3.4 here. It revisits the mail application scenario
of Examples 1 and 2 to give an intuition of how a method local type directly relates to the
AST of an ABS method.

36

3. Concept

The main objective of this thesis is to develop a tool which is able to verify that an ABS
model complies with a protocol specification based on session types. For this purpose, we
build upon the theoretical work of Kamburjan et al. in [30] and [28]. Kamburjan et al.
approach this challenge in two steps:

1. It must be statically verified that the implementation of every method locally complies
with the actions specified for it in the protocol.
2. Activations and reactivations of these methods must be scheduled in the specified

order on the object level.

Moreover, we incorporate ideas from [29] to extend session types with postconditions
which allow reasoning about the effects of method executions on an active object’s state.
We verify these postconditions at runtime.

Therefore, we establish the following conceptual goals to be achieved in this thesis:
Goal I. Implementation of a specification language for communication protocols in dis-
tributed systems based on session types.

Goal II. Static verification of method-local compliance of an ABS model with a session
type specification.

Goal III. Dynamic enforcement of method activation order and safety properties as speci-
fied by a session type.

Goal IV. Verification of postconditions of interactions between actors at runtime.

37

To realize goal I, a parser has been implemented which can read a session type specification
from text files. It needs to produce a representation of session types as a data structure
suited to achieve an implementation of goals II to IV. The details of how the parser has
been implemented are presented in Chapter 4 in Section 4.3.

Furthermore, since it is possible to create session type specifications which are semantically
invalid, it is necessary to validate the specification provided by the user. Moreover, the
Projection process needed for static verification requires additional information about
each component of a protocol specification that is not provided by its syntactic form.
For example, it is necessary to know exactly which futures are supposed to be active at
every point of a session protocol. Both, validation of a session type and its annotation
with additional information is achieved by a process we call Configurable Session Type
Validation, see Section 3.2.

We approach the challenge of accomplishing goals II and III by solving them for each actor
and method individually. This requires us to extract object local and method local session
types from a global session type specification by Projection. We present our version of
Projection in Section 3.3.

Details on how we achieved goals II to IV are explained in Sections 3.4, 3.5 and 3.7.
Figure 3.1 illustrates the dependencies between the goals and the major conceptual steps
of Configurable Session Type Validation and Projection.

38

Goal Il Goal Ill

(Method Local Projection J

S

[Object Loc

al Projection]

[Configurable Session Type Validation }

Parser

(Lo]

Figure 3.1.: Dependencies between major conceptual steps and thesis goals.

39

3.1. Tool Architecture

Input Protocol SpecificationB| ABS Model Source Iﬁ
Y
ABS Parser + Typechecker
ABS Model
Y Y

SDS-tool

extended + checked Model l

ABS Compiler

l

Output Executable Model (Erlang)

Figure 3.2.: Rough overview of the mechanics of the SDS-tool.

Figure 3.2 gives a rough overview of how the SDS-tool developed in this thesis operates.
It takes protocol specifications as text files and the source code of an ABS model as input.

The source code is parsed and type-checked by the existing compiler for ABS [44], which
produces an Abstract Syntax Tree (AST) of the model. Our tool then inspects this AST to
verify statically that the model’s methods locally conform to the communication correctness
requirements imposed by the protocol specification. If the model passes the verification, it
is then modified to carry out the dynamic enforcement goal and check postconditions at
runtime. This modified AST is then passed on to the abstools backend compiler, which
produces an executable Erlang program.

Figure 3.3 shows how the concepts introduced in this chapter make up the architecture of
the tool in a more detailed way.

40

ABS Model Source Code Global Session Type Specification

(*.abs files) (*.st files)

& &
<—LABS Frontend Parseﬂ | Session Type Parser

ABS syntax Session Types
error @ Global Session Types syntax error
Y @
Session Type Validation & Preprocessing | 1| ™
by Configurable Session Type Validation invalid
Annotated Global specification
@ Session Types
\4
v | Object Local Session Type
ABS Frontend Typecheckil Extraction
ABS type by Projection
error Annotated Object Local
@ Session Types
Dynamic + v
Enforcement ;
Generation of Method Local Session]
Session Type Type Extraction >
Automata by Projection invalid
@) Method Local specification
Session Types
Y Y £ 17 {E}
Extension of Model Static Verification of local actions I ety
with Schedulers by a type system .
model violates
specification
Y Q . .
Extension of Model Static Analysis
with Assertions
\]
LABS Backend CompilerJ
Session Type ABS

Tool

= Existing abstools component
with only small modifications

\J
Executable Erlang Output

Figure 3.3.: Detailed overview of the architecture of the developed tool.

41

3.2. Configurable Session Type Validation

As mentioned, we validate specifications and annotate them with additional information by
executing a session type. This means the session type is split up into its atomic components
which are treated as instructions and control structures of a program. This program is
then executed on some state. A session type is considered invalid if the execution stops
before processing the whole type. The pre- and poststates of applying an instruction carry
the desired additional information necessary for Projection and are annotated onto the

type.

Illustration
Consider the following session type:

! r
0=p:mp=qm.qglf .ptfplf
A B

We can interpret this type as a protocol which specifies that actor p calls method m’ on
actor ¢, g then computes the result and p reads it.

To illustrate the analysis process, we now informally execute this type as a program
on a state which records at what point in the protocol a future can be considered
to be resolved. Therefore, we model state as a set of futures and start execution
with the empty set as initial state. Execution is performed by a transition function
~: State X Garomic — State which is modeled so that a future is added to the state
whenever a resolving type is encountered:

! LA / '
o bmim g penl g S gpn B G 2 g g

initial state final state

Suppose we implement our transition function ~~ as a partial function that does not
execute a fetching type if the fetched future has not been resolved yet, i. e. it is not part
of the state.

We can then easily see that the execution would not complete for the following type
which specifies that p reads the result of calling m’ before the call has been completed:

42

f I
0=p:mp—=q:m.ptf.qlf plf
S~ Y~
B A
Therefore, we could use this state model and transition function to validate that only

resolved futures are read. It would also compute for every atomic component of a type
which futures are supposed to be resolved at this point.

We call this concept of validating session types by executing them with a configurable
transition function, configurable states, etc. the Configurable Session Type Validation. It
has loosely been inspired by the Configurable Program Verification method which has
been developed by Beyer, Henzinger and Théoduloz [4]. Validation of session types has
originally [30, 29] been performed for the most part during Projection (see Section 3.3).
The Configurable Session Type Validation thus separates the validation of a session type
from the extraction of a localized specification. We argue that this modularization makes
our tool easier to maintain. The previous theoretical works on Projection also retrieve
contextual information (like resolved futures) by referencing and querying different parts
of the specification whenever needed which is tricky to implement. Since contextual
information is provided by the annotated pre- and poststates of each component of an
executed session type, we have also separated out this concern from the Projection process.

To our knowledge, Configurable Session Type Validation is a new approach on accom-
plishing the above means. We occasionally refer to it in the remainder of this thesis by the
abbreviation Configurable Validation or CST Validation.

3.2.1. Formalization: Configurable Session Type Analysis

A configurable session type analysis D = (D, 0, ~~, merge, selfContained, closeScopes) con-
sists of

a set of states D
* an initial state og € D

* a partial transition function which executes an atomic component of a session type
on a given state, ~»: D X Ggomic — D

* a partial function for merging branches, merge : D x D — D

43

e a predicate for checking whether a repetition is self-contained, selfContained C D?.

* a partial function for closing scopes, closeScopes : D x D — D, since some analyses
need to adjust their state if the scope of a future ends. It takes the prestate of a
concatenated type and the poststate of its last component as input.

This structure of analyses has been derived from the configurable program analyses pre-
sented in [4]. The functions mentioned above are partial since them being undefined
for some input type can be used by an analysis to signal that a type is invalid. Since
there are multiple validity properties regarding session types, we decided to modularize
Configurable Validation into multiple analyses (P, IF, A, R), each responsible for a different
family of validity properties. Moreover, if the session type specification language we use
for our tool was to be extended in the future, validation of the extension could be achieved
just by adding another analysis. The individual analyses and the validity properties they
each inspect are explained in Sections 3.2.2 to 3.2.5. Self-containedness, in particular, is
checked in analyses A and R.

To avoid having to perform a Configurable Validation multiple times for every analysis,
we also provide the Combined Analysis C, which incorporates all the other analyses, see
Section 3.2.6. The idea of modularizing and recombining analyses was inspired by the
concept of Composite Program Analyses developed by Beyer et al. in [4].

Execution Function

The actual application of Configurable Validation with an analysis D on a concatenated
session type has been formalized by the function executep : G — GP, see Figure 3.5.
It takes a global session type as input and outputs the same session type but every
component has been annotated with its pre- and poststate during execution. The function
is only defined if execution does not stop prematurely, indicating an invalid type. We call
a session type when successfully executed and annotated with an analysis D, an Analyzed
Global Session Type and denote it by GP. The syntax representing Analyzed Global Types
is defined by the grammar in Figure 3.4. It simply annotates pre- and poststates in angle
brackets behind a type, €. g. p | f (Gpre, opost). For concatenated types G”.g° (opre, opost)
we simply write G'P (opre, 0post) With G = GP.gP to access the annotation of its last
component.

The partial function executep is a convenience wrapper around another function executeStepy,.
It selects the initial state o of the analysis as a starting state for the execution. Because

44

= (@)(0pre; opost) | (A)[A]
a) G | pl(A)er) | (A"

Figure 3.4.: Grammar of Analyzed Global Session Types. G denotes an atomic global
session type. p is an actor, opr and opos Symbolize pre- and poststates.

all outmost scopes are closed when a concatenated type ends, closeScopes is applied to
the result type. We continue by discussing executeStepy,.

For atomic types g, see Case 3.1, executeStepy, annotates the input state o as prestate and
~p (0, g) as poststate, which is the application of the transition function of analysis D on
the input state and g. It then recursively continues execution on the remainder of the
input type using the poststate of g as next prestate.

Branching types are executed on each branch individually and the resulting states are
merged into one state by applying mergey, pairwise, see Case 3.2. Execution then continues
on the merged state. Since the end of every branch closes scopes, closeScopes is applied to
each of them.

For repeated types, executeStepy, does continue on the poststate of the nested type, al-
though behavior specified by repetitions is not required to take place at all. This is not an
issue since they must be self-contained, see Section 2.3.1, which is checked. Keeping the
poststate of the nested type allows analyses to retain the information that the repeated
type is present in the protocol. Considering a repeated type closes scopes, closeScopes is
applied, too.

45

executep : G — GP

executep(G) = G;Dgsuh <Uprea01/)ost> if

executeStepy, : D x G — GP
executeStepy,(o,0) = 0
executeStepy (o, g.G) =

g(0,~ (0,9)).G”

p{(CP (0. 0tpas)) _, } (:0p0u) G

<GIg <a, U;/)ost>) <a, Uz,ost> GP

GE)esult <Uprea Upost> = executeStepy (oo, G)

/
N o5t = closeScopes(o, opost)

g e gatomic (31)
A GP = executeStepy (~ (o, 9), G)
9=p{(Gi)ier} (3.2)

A <G]ZD <O’, Ji;p05t>>iel
= (executeStepy (o, Gi));cr
AVYi € 1.0}, = closeScopes(a, oipost)
N Opost = mergeseq]l))((o-g;post)iel)
AGP = executeStepp (post; G)
g=(Go)" (3.3)
NG (5,0} =
= executeStepp (o, G)
A Opost = closeScopes (o, opost)
A (0, 0post) € selfContained

A G = executeStepy (g G)

o ifn=0
mergeSeqp ((01,02,...,00)) = { 01 ifn=1
mergeSeqy, ((merge(o1,02),03,...,0,)) otherwise

Figure 3.5.: Formalization of Configurable Validation by executing a session type via

the function executer.

D may be any configurable analysis with D =

(D, 09, ~», merge, selfContained, closeScopes). We denote the end of a concate-

nated type by (.

46

3.2.2. Participants Analysis
We start with the simplest analysis, which we call the “Participants Analysis” P. Its purpose
is to determine which actors are participating in a global session type.

Given two global session types, this information can be used to decide whether an actor is
participating in both. This is utilized in the developed SDS-tool to permit the specification
of multiple protocols for an ABS model, as long as their participants do not intersect.

Execution of a type with this analysis does not perform any validation like the other
analyses, it only collects data.

P = (P, oo.p, ~p, mergep, selfContainedy, closeScopes)

States

Since this analysis shall gather actors, we model state as a set of actors:

P = 2Actors

The initial state before executing any session type where no actor has yet been observed
to participate in the protocol is therefore modeled as the empty set:

Transition Function

The transition function of P (see Figure 3.6) adds actors to a state when applied to any
session type referring to actors, as in cases 3.4 and 3.5. Consequently, the state is not
modified when encountering an actor which has already been added or when processing
the Skip type, as in Case 3.6.

47

oU{p} if G:0i>p:m (3.49)
VG =pl f[(C)
B VG=p1 flO)
Pl VG =Rel(p,)
oU{p,q} ifG:qu:m (3.5)
L o if G = Skip (3.6)

Figure 3.6.: Transition function of analysis P.

Merging

To compile a list of all potentially participating actors, we need to consider every actor
appearing in any branching of a protocol. When merging post-states of branches, we
therefore compute their union:

mergeP(al, 0'2) =01 Uo0o9

Self-Containedness

The self-containedness of repetitions is not checked by this analysis. Thus, its selfContainedp
predicate is defined to be fulfilled for all inputs

selfContained, = P x P

Scope Closure

A scope being closed is not relevant to collecting participating actors, hence, the closeScopesp
function does not perform any changes or validation here:

closeScopesp(Opre, Opost) = Tpost

48

3.2.3. Future Freshness Analysis

The “Future Freshness Analysis” IF records created futures and what actors and methods
they belong to. Furthermore, it validates that no future is introduced twice by a call.
We also make sure a future can only be referenced within its scope. This way, it is
unambiguous to which computation a future symbol refers to at all times.

F = (F, ooF, ~F, mergey, selfContainedy, closeScopesy)

States

Encountered future symbols are paired with the name of the method they are computing
and their actor. We also keep a set of future symbols whose scope is currently accessible.
Thus, state is modeled as a set of future-actor-method triples and a set of accessible futures:

F = 2]—‘><Actors><Methods > 2.7-'

Since no future of a session has been created before performing the initializing action
ER p: m, we define the initial state as the pair of empty sets:

0'0;[[? == (@, @)

Transition Function

The transition function of this analysis (see Figure 3.7) has been defined so that it adds a
future-actor-method triple to the state, as soon as an initialization or interaction type is
encountered (Case 3.7). It also marks the newly introduced future as accessible by adding
it to the second component. For all other types, the state stays unchanged (cases 3.8 and
3.9).

Furthermore, the side-conditions of Case 3.7 ensure that an interaction type is only
accepted if the specified future has not been introduced yet, i. e. there is no future with
that name whose scope is accessible. Also, all other atomic types carrying future symbols
(Case 3.8) are only accepted, if the future’s scope is accessible. This requires that the
future is part of the second component of the current state.

49

~ ((01,02),G) =

(o1 U{(f,p,m)}, o2 U{f}) if(G:OLp:m\/G:qu:m) 3.7)
AN(fy0) ¢ o
(01,02) if(G=plflO)] (3.8)
VG=pt flC)]
V G =Rel(p, f))
ANf € oo
L (01,02) if G = Skip (3.9

Figure 3.7.: Transition function of analysis F.

Merging

For branching types, we allow the introduction of the same future symbol in multiple
branches since their scopes are separate. However, they must reference the same actor
and method. We make use of this requirement during static verification, which needs to
check whether branches are equivalent.

Since closeScopesp eliminates all newly introduced futures from the second component
of the state, the second components are identical, and we can just continue with one of
them.

mergeF((Uh 02)7 (Uia 0/2)) = (01 U 0'17 02)

if 4f, p, o', m,m/ A{(f,p.m), (f,p',m")} C (o1 No) Alp#p' Vm#m)

Self-Containedness

Self-containedness is not checked by this analysis, thus the predicate is always fulfilled:

selfContainedy = F x F

50

Scope Closure

Whenever a concatenated type ends, all futures which are not in a surrounding scope
are no longer accessible. Therefore, we need to remove all futures from the second state
component which were not already accessible in the prestate:

closeScopes((o1,02), (0},0%)) = (0,05 \ o2)

3.2.4. Actor Activity Analysis

The purpose of this analysis is to keep track, at which point of a session which futures are
active on which actors, which futures are suspended and when they need to be reactivated.
It also validates that only actors with an active future can perform any actions.

A = (A, 00, ~n, merge, , selfContained, , closeScopes ,)

States

For every actor, we capture whether it is currently inactive, active or suspended. Therefore,
state is modeled as a function which maps each actor to its symbolic activity status,
“Active”, “Inactive” or “Suspended”.

If an actor is active or suspended, we also record the futures which are suspended and
map them to the foreign futures they are waiting on. Moreover, if an actor is active, we
store the currently active future.

This results in the following set of states:
A = Actors — ActivityStatus
where

ActivityStatus = {Inactive}
U {(Active, f, Waiting) | f € F A Waiting C F*}
U { (Suspended, Waiting) | Waiting C F*}

Before initiating a protocol, no actor is active. Consequently, all actors are marked
“Inactive” in the initial state:

o0.a = {(p, Inactive) | p € Actors}

51

Transition Function

The transition function of this analysis (see Figure 3.8) has been designed so that it collects
information about the activation of participants and futures. It performs some validation
steps related to future activation, too.

In general, an actor may only perform an action if it is currently active (o(p) = (Active. . .)).
For calls (cases 3.10, 3.11 and 3.12), the callee state is always set to “Active”. Howevet,
the side-conditions ensure that the callee has been inactive or suspended and the caller
been active before that. Also, if the callee has been suspended, it is ensured that its record
of suspended futures is preserved (Case 3.12).

When releasing control until another future f completes, as portrayed by Case 3.15, an
actor’s state is switched to inactive and its active future f added to the waitlist of the
actor’s suspended futures. However, we only allow releasing control if there is not already
a suspended future of the actor waiting for f. Otherwise, it would be ambiguous which
future to resume when f completes, see the following example:

Example: Releasing control twice on the same future
f f/ f//
0= p: my.p — q: ma.Rel(p, f').q — p: mg.Rel(p, f').q | f ...
(In
9]

When f’ is resolved (II), it is unclear, whether f or f” shall resume execution on p if
we would allow actor p to release control on f’ again at (I).

When the executed type specifies an actor to resolve its active future f4, as in Case 3.13, the
actor is first marked as inactive or suspended, depending on whether it still has suspended
futures. We employ the helper function releaseActor to deal with this distinction. This
results in the intermediate state o’. Then ¢’ is again updated so that all futures suspended
on f4 and their actors are reactivated. The Case 3.15 also carries a side-condition
dontReactivateActives which makes sure that a resolving action can not be specified if
there are futures suspended on the resolved future whose actors are currently active. This
is necessary since resolving a future always implicitly resumes futures suspended on it.
However, resuming a future is impossible while another one is still active in the same
actor. See also the following example:

52

Example: Reactivating a suspended future on an active object
f fl f//
0= p:mi.p— q: maRel(p, f).q —p:.ql f ...
N——
()
At () future f” is active on p. If this resolving action was allowed, f would be required

to be reactivated at this point. This is impossible since f” is currently active and an
active object always has only one thread of control.

Finally, a Skip type does not affect the state, as implemented by Case 3.16.

53

~o (o', G) =

olp == (Active, f,0)]
olg = (Active, f,0)]

olq = (Active, f, Waiting)]

(Qa (ACtiV@, fa Waiting/ \ {(f7 fA)}))
| ¢ € Actors

A o' (q) = (Suspended, Waiting”)
A (f, fa) € Waiting'

olp = (Suspended, Waiting U (fa, f))]

g

where

ifG=0 i> p: mAo(p) = Inactive (3.10)
if G=pLgm 3.1D)
No(p) = (Active, -, -)
A o(q) = Inactive
if G=pLig:m (3.12)
No(p) = (Active, -, -)
N a(q) = (Suspended, Waiting)

G=pl fallC)]
.. No(p) = (Active, fa, Waiting)

if A o' = releaseActor (o, p, Waiting) (3.13)
A dontReactivateActives(o, f4)

it G=p1fICO)] (3.14
Nao(p) = (Active, -,)

if G =Rel(p,f) (3.15)
A o(p) = (Active, f4, Waiting)
A (-, f) ¢ Waiting

if G = Skip (3.16)

dontReactivateActives(a, f4) = fq.(c(q) = (Active, -, Waiting”) A (-, f4) € Waiting”)

releaseActor (o, p, Waiting) = {

Figure 3.8.: Transition function of analysis A.

o[p = Inactive]

if Waiting = 0

o[p == (Suspended, Waiting)] otherwise

54

Merging

We want branching types only to be valid if we can be certain for every actor and future
whether it is active, inactive or suspended after the branching. That is why the merge,
operator requires the A post-states of every branch to be equal:

mergeA(ol, 0'2) =01 if 01 = 02
The following example demonstrates the kind of issues that would arise otherwise:

Example: Resolving a future in only one branch
OLp: m.p pi‘f .pf—,>q: m...
Skip
9]

If we were to allow a branching type like (I), then it is not ensured that actor p would
be able to perform the call in (II). If p followed the first branch, it would be inactive at
this point, if it followed the second one, it would be active.

We want to point out that restrictions such as these can potentially be lifted, however,
it simplifies reasoning and the implementation of the developed tool. For example, we
could keep track of state in a more fine-granular way, such that it is known, which exact
parts of a state are ambiguous. Then a branching type with differing post-states for the
branches could be acceptable if no later action depends on ambiguous parts of the state,
e. g. there is no call like (II) in the above example. Actually, Beyer et al. implement this
for their program analyses by using semi-lattices as abstract states [4].

Self-Containedness

Since the actions specified by a repetition type may be executed an unknown number
of times or not at all, resulting in an ambiguous post-state, a similar reasoning as in the
above section applies. Therefore, analysis A regards a repetition only as self-contained if
the post-state of its inner type is equal to the state before executing the repetition type:

(Uinnera Upre—state) € SCZfCOTltCliTlCdA <> Oinner = Opre-state

55

Effectively, this requires futures to be active at the end of a repeated type if they were
active at its beginning and to be suspended if they were suspended at its beginning. Please
note that this also means that a future suspended at the beginning of a repeated type can
not be reactivated within the type. This is because to be suspended again at the nested
type’s end requires to await a different future as before.

Scope Closure

Futures created in nested types (within branchings, repetitions) are always resolved within
their nested type, as required by analysis R, see Section 3.2.5. Therefore, they can not
appear as a suspended or active future in its A post-state within the combined analysis.

Thus, no special actions are necessary upon closing scopes in the A analysis:

CloseSCOpeS(Upre , Upos[) - Upost

3.2.5. Resolution Analysis
Execution of a session type in the “Resolution Analysis” R validates the correct usage of
results of futures in a specification.

More precisely, it validates that a protocol can only specify fetching operations on futures
which have completed their computation. It also validates that futures are resolved within
their scope.

R = (R, oo.r, ~r, mergep, selfContainedy, closeScopesy,)

States

To check whether a future has been resolved yet, the analysis’s states need to track a set
of resolved futures. This set is extended every time a resolving type is processed.

Furthermore, it needs to record a set of futures which have been introduced in the current
(nested) type so that it can validate that they have been resolved when reaching the end
of the type.

Thus, states in R are modeled as pairs of sets of futures:

R=2" x2F

56

Initially, no futures have been introduced or resolved, hence, the initial state is modeled
as the pair of empty sets:

0'0;]R = (@, @)

Transition Function

R’s transition function (Figure 3.9) marks a future as resolved, as soon as it is specified in
a resolving type. This is captured by Case 3.18. We do not need to check whether a future
is resolved twice since the Actor Activity Analysis A implicitly verifies this by only allowing
active futures to be resolved. Similarly, A also ensures that only active, non-resolved
futures may be the target of releases of control, so we do not need to check for this either
when processing release types (Case 3.20).

Case 3.19 validates that a fetching action may only be specified if the fetched future has
been marked as resolved in the current state.

Case 3.17 records newly introduced future symbols in the second component of the state
so that their resolution within their scope can be verified by closeScopesy.

57

(o,0.U{f}) if G:OLp:m

\/G:pi>q:m

(o Uf{f}o0) G =pl fIC)]

g ((0),04),G) = (0, 04) if G=ptf[(C)]
ANf e oy
(04,04 if G = Rel(p, f)
(01, 0%) if G = Skip

Figure 3.9.: Transition function of analysis R.

Merging

(3.17)

(3.18)
(3.19)

(3.20)
(3.21)

After a branching type, information about the resolution status of futures is only needed
for those futures which have been introduced before the branching type. This is because
fetching actions may not operate on futures introduced in nested types. Thus, we compute
the first part of the merged state from the intersection of recorded resolved futures of the
post-states of all branches. We do not need to be concerned about the removal of futures

which have been introduced before the branching type since...

(a) if a future f which has been introduced before the branching is resolved in a branch,
it must be resolved in all branches. This is already being validated by the merge,
function of the “Actor Activity Analysis” A. Thus, if merge, is defined for the post-
states of two branches, f would be marked as resolved in both post-states in analysis

R.

(b) no operation in ~»g removes futures

Analogously, we can retrieve the set of futures introduced in the surrounding scope of
the branching until now by computing the intersection of the second component of the

post-states of branches.

mergeR((Ul,;la 0'*;1)7 (U¢;2a U*;Q)) = (Ui;l N 01:2,0x;1 N 0'*;1)

58

Self-Containedness

To validate that no future introduced outside of a repetition (G)" is resolved within G,
the selfContainedy predicate of analysis R requires the futures marked as resolved in the
post-state of GG, executed on the pre-state of (G)* to be equal to the resolved futures in
said pre-state.

In simpler terms, it checks that there is no type p | f in (G)" where f is a future which
has not been introduced in GG but before the repetition.
((Ol;pre-statey J*;pre—state)a (Ol;innera U*;inner)) € selfContainedR
=

O |;pre-state — O |;inner

Scope Closure

Analysis R utilizes its closeScopesy function to verify that newly introduced futures are
resolved until the end of a (nested) type. This way, every future is resolved within
its scope. Thus, closeScopesy is only defined when all futures introduced in a (nested)
type are a subset of those futures which have been resolved, as noted in the first state
component. In the case that we are in a nested type, the futures introduced in it are
isolated by computing the set difference with the futures already recorded in the prestate.

Consequently, we can then also delete all those futures from the second component.

closeScopes((apre;i, Upre;*), (Uiv U*)) = (UJ, \ Fyp, Upre;*)
if Fyp = o0 \UprE;* A Fap C oy

3.2.6. Combined Analysis
The Combined Analysis allows to apply all of the above analyses in parallel to a type.

C = (C,00.c, ~c, mergec, selfContained, closeScopes)

59

States

States in the Combined Analysis are modeled as cross product of the state sets of the
other analyses so that a state in C can carry the information collected by all sub-analyses.
Consequently, the initial state is defined as a tuple build from all initial states of the sub-
analyses.

A=PxFxAXR

oo.c = (00:p, 00;F; 00:A, OO;R)

Operations

The transition function of the Combined Analysis applies the transition functions of the
sub-analyses to each sub-analysis’s state component individually, see Figure 3.10. The
same concept applies to the other operations merge., selfContained. and closeScopes,
see Figures 3.11 to 3.13. In the case of the selfContained predicate operation, a state in
the Combined Analysis fulfills the predicate if the states of all sub-analyses fulfill their
implementation of the predicate.

60

~¢ ((op, or,08,0r) ,G) = (

(o8, G),
(

)
¥
Q

P
~F
~MIA
R

(o4, G)
(URv G)

Figure 3.10.: Transition function of the Combined Analysis C.

mergec ((01;p, 01,7, 01;45 OLR) , (02,p, T2,F, 02,4, 02,R)) = (

mergeﬂp(m;]p, 02;P)7

mergeg(o1,F, 02.F),

merge, (01,4, 02;4),
(

mergeg (01.r, O2:R)
Figure 3.11.: Merge operator of the Combined Analysis C.

(Uinner;IPa Oinner;F, Oinner;A Uinner;R)a

(O'pre—state;IP’a Opre-state;F, Opre-state;A O'pre—state;R)
) € selfContained

< /\ (Uinner;i7 Upre—state;i) € SelfC’Ontainedi
ic{P,F,AR}

Figure 3.12.: Self-Containedness check of the Combined Analysis C.

61

closeScopesc ((01,p, 017, 0154, O1R) 5 (2P, 02, 02:4, O2;R)) = (
closeScopesp(o1.p, 02.p),
closeScopesy(01.x, 02.7),
closeScopes, (1.4, 02:4),
closeScopesy (01.r, 02:r)

Figure 3.13.: Scope closing operation of the Combined Analysis C.

3.3. Projection

Projection is the process of extracting a local session type specification of the behavior of
a single party from a multiparty global session type [21]. In our case of a concurrency
model of active objects, we also differentiate between projection on objects and projection
on methods [30]. Projection thus allows us to implement dynamic enforcement (goal III)
and static verification (goal II) on a per-object and per-method basis respectively.

executec(G)

Global Type G ———— Analyzed Global Type G

ettt ((XC
proeet (&), Analyzed Object Local Type LS

ject®, (LC
projects (&) Method Local Type M

3.3.1. Object Local Projection

Projection on active objects is a partial function which maps Analyzed Global Types of the
Combined Analysis to Analyzed Object Local Types for a given target object ¢:

project' : G& — €

62

Analyzed Object Local Types are defined analogously to Analyzed Global Types in Fig-
ure 3.14. They are object local session types annotated with the pre- and poststates of the
global type they were projected from.

Although almost all validation of session types is performed by our CST Validation, there
are a few exceptions which are validated throughout object and method projection. Hence,
projection is a partial function which is not defined for invalid session types. Projection
works by only keeping those components of a more global type which directly involve the
target we are projecting on and translating them into a localized type syntax. The other
components result in the Skip type. When projecting on objects, we also copy annotated
state information since it is required to perform method projection and static analysis.
Our projection functions are based on the ones developed by Kamburjan et al. in [30] but
they have mostly been stripped of validation steps since those are handled by the CST
Validation. Also, they draw from state information.

For calls, we keep only those where the target object is either the caller or the callee, see
cases 3.22 and 3.23.

A resolving type p | f[(C)] produces the local Put f [(C)] type, if the target ¢ of the
projection is object p resolving future f, see case 3.24. It can also result in the React f’
type if our target object ¢ does not resolve f but there is a future f’ of ¢ which has been
waiting for the completion of f (case 3.25).

A fetching type p T f [(C)] is translated into the equivalent Get f type if the target object
is performing the fetching action, see case 3.26.

Releases of control Rel(p, f) are projected to the object local counterpart Await(fa4, f),
where f4 is the future that has been active on p and which should from now on await the
completion of f. However, this only applies if we are projecting on p = ¢. Other actors do
not need to implement behavior for this type, therefore, we project to Skip for them. See
case 3.27.

We keep repetitions (GC)* and project their content GC (case 3.28). Yet, if the target
object is not participating in the nested type of a repetition, that is, projecting the nested
type produces Skip, we remove the repetition brackets and only keep the Skip.

Branchings p {...} are projected branch-wise to the Choice-Type @ {...} if the target
is the object p choosing the branch to take (case 3.29) and to the Offer-Type &¢ { . }
otherwise (case 3.30). This is also the one case where object projection can be undefined
if the choosing object p is not active, as revealed by the A-analysis. We could also check
for this during Configurable Validation (Section 3.2), but then we would need to make

63

= @<0prevapost> | -
b L | &{(Bi)ier} | &{(Biiery | (B)

Figure 3.14.: Grammar of Analyzed Object Local Session Types. L denotes an atomic
object local session type. f is a future, o,r. and oposr Symbolize pre- and
poststates of analysis C.

executeStepy, aware of the A-analysis. However, we wanted to keep executeStepy, flexible
and generic and thus not specialized on some analysis.

When projecting concatenated types, we project them component-wise and remove all
intermediate resulting Skip types, see case 3.31. Not having to worry about encountering
Skip’s in concatenated types simplifies further processing slightly.

A single Skip type is preserved by projection, see case 3.32.

64

p?fm <0'pre7 Upost> ift = p

: . (3.22)
Skip (opre, Opost) ~ Otherwise

projectt(O i> P: M {Tpre; Opost)) = {

f q'ym (Opre, Opost) ift =p
%5 q: M (Opre, Tpost)) = { D7 1M (Opre, Tpost) ift = ¢ (3.23)
Sklp <Jpre, Jp05t> OtherWise

project’ (p

project' (p 4 f [(C)] (0pre, Tpost)) =
Put f [(C)] (opre. Opart) i 6= (3.24)
React " (opre; Opost) if t#£p (3.25)
A sub (opre)(p) = (Suspended, Waiting)
A(f', f) € Waiting

Skip (Opre, Opost) otherwise
. Get f [(C)] (opre, opost) ift=p
tt c res Opost)) = . ; 3.26
project'(p 1 f1(C)] (@pre; post)) {Sklp (Opre;s Opost) otherwise ()
AWClit(fA, f) <0pre; Upost> ift = p
project' (Rel(p, f) (Tpre, Tpost)) = A suby (opre) (p) = (Active, fa, Waiting)
Skip (opre, Opost) otherwise
3.27)

(LC)* (Opre, opost) if project' (G€) = L©
project’ ((GC)” (Tpre, Tpost)) = A LE # Skip (-, -) (3.28)
SKip (Opre, Opost) otherwise
ProjeCft(p {(Az)lel} <0'pre7 Upost)) =
® {(project”(A;))ic1 } (Opre, Opost) ift=p (3.29)
&y {(project’(A;))ier } (Opres Opose) ~ if t#p (3.30)
A suby (opre) (p) = (Active, f, Waiting)

LE (0pre, Opost) if projectt(A) LE (0pre; -
A project (A") = Skip (-, opost)
project'(A.A") = Y project (A) = Sklp (opre, *) (3.31)
A project®(A”) = LT (-, 0post)
project’(A).project' (A’) otherwise
project’ (Skip (Tpre, Opost)) = SKip (Tpre, Tpost) (3.32)

Figure 3.15.: Projection function for producing object local session types from global
session types for a given actor p € Actors

65

3.3.2. Method Local Projection

Projection on methods is a partial function mapping the Analyzed Object Local Type of an
object ¢t to a method local type for a target future f:

project} LE =~ M

We are projecting for a particular future f instead of a method because there may be
multiple calling actions specified for the same method in a session type. We allow projection
results for futures which have been created from the same method to differ. However, our
static analysis ensures that the method’s implementation conforms to all of them. Method
projection has been formalized in Figure 3.16.

Atomic components are copied from the object local session type without modification
if the future we are projecting on is currently active (case 3.33). However, as explained
in Section 2.3.3, receiving and reactivating types are Skipped, see cases 3.34 and 3.35.
Concatenated types are projected component-wise, see case 3.36.

For repetitions (. ..)", we project on the nested type and remove the repetition brackets if
the future we are projecting on is introduced within the repetition (case 3.37). This is
because the method typed by the repetition is supposed to be called within the loop and
does not implement it. However, if the future existed beforehand and projection of the
nested type does not result in the Skip type, we keep the repetition with the projected
type inside since the method then must implement a looping statement (case 3.38). As
pointed out in Section 3.2.4, the projection of the nested type can only result in a type
different from Skip if the future was active when entering the loop. Otherwise, we simply
Skip the repetition, see case 3.39.

Choice-Types @ {...} are projected branch-wise. We Skip the type entirely if all branches
result in a Skip type (case 3.41).

Offer-Types & {...} are the only types for which method projection can be undefined if
an invalid type is detected. Here we differentiate between 3 cases for the future f we are
projecting on:

(a) Either f is introduced in one branch...

(b) ...or f does not participate in the branching and has the same behavior in all
branches.

66

(¢) ...or f reads from the choosing future f’ and changes behavior depending on the
result.

In the simplest case (a), we just need to project the branch f is introduced in. See
projection case 3.42.

In case (b) we project every branch on f and check whether they are all future-equivalent.
If this case applies, we select one of them as projection result. This is carried out by the
helper function identicalBranches, see projection case 3.43 and equation 3.49. Our version
of future-equivalence for method local types is disclosed further below.

Otherwise, case (c) applies. The projection then needs to perform the following steps:

S1 project the type branch-wise and check whether f reads from f’ in every branch,
Also, each time the result must be built using a different constructor than in all other
branches.

'-Getf’(CH)-
-Getf’(Cz)-

e Get f/ (Chn) e
S2 if so, extract the part of each branch up until that point (marked in -).

S3 check whether these parts are equivalent for all branches. Otherwise, let projection
fail (undefined result).

S4 put the equivalent part before the Offer-Type and remove it from the branch pro-
jections. Also, remove the fetching types Get f' (C;) and put it in front of the Offer-
Type without a constructor annotation. Instead, label each branch by the unique

constructor.
C1 g
Cy -
e Get f/.&f/
Cs - g

67

Step S1 is necessary to ascertain that case (c) really applies. Then, the computation
referenced by f must behave the same for all branches up until the point f reads from f’
(steps S2 and S3). This is because f does not have any information about which choice
f/ made before then. If the specification violates this requirement, it is invalid. Thus,
we must abort projection. We do not check this validity property during CST Validation
because it requires us to view the behavior of every future in isolation. Hence, method
projection is more suited to this task.

During static verification, we have to check whether methods with Offer-Types have control
structures (case statements) such that their behavior depends on the constructor of the
fetched future f’. To make verification easier, we have to know which constructor belongs
to which branch of the specification. Therefore we perform step S4. Since the behavior
encoded in the identical parts of the branches needs to be implemented preceding the
control structure within a method, we also move the identical parts and the fetching action
in front of the Offer-Type. This way, the session type can be processed component-wise
during verification without having to analyze Offer-Types.

All steps are performed as part of the function extractBranchLabels and its helper function
splitOnGet and helper set Splits. The function splitOnGet, see equation 3.48, computes all
possible ways of splitting a branch specification into a part preceding a fetching action
of f/ by f and a part following it. Now, the set Splits, see equation 3.47, filters these
results so that only those splits remain where all branches share the same prefix before
the fetching action. Finally, extractBranchLabels selects the split with the smallest prefix
from Splits, see equation 3.46. However, this decision restricts the space of methods which
conform to the protocol and are verifiable. The static verification expects an Offer-Type
to directly be implemented as a control structure (case-statement). Imagine there are
two split possibilities in Splits with prefixes p; and ps, where p» is longer i.e. ps = p1.p’.
Both, methods implementing the behavior of p’ before and inside the control structure are
conforming to the type. Nonetheless, only the latter is verifiable by our technique since
we are always choosing the smaller prefix. This could be improved by encoding every
possible prefix in the type and trying to verify every possibility. On the other hand, we
did not want to introduce even more complexity to the projection and verification.

Example 3: Mail Notifications — Method Projection
Once again, we revisit the mail application from Examples 1 and 2 to illustrate the
projection of an Offer-Type onto a future.

The following is an object local type describing the behavior of the notification service.

68

For the sake of brevity, we leave out pre- and poststates:

07 4, init.
(
MailServer! ¢, checkMail.

.

Get f1 (NewMail) .
) .)

Get f1 (NoMail)

\
)"
Put fj

To demonstrate the extraction of prefixes, we also moved the service’s suspension into
the branching type. The shared prefix of equivalent behavior in all branches has been
marked in -, the retrieval of results of f; in yellow and differing behavior after
reading the result in -

This is the result of projecting component (1) on fj:

projec t]}l:tiﬁcationService (€)))

Get f; .

69

Future-Equivalence of Method Local Types

To determine whether branches of an Offer-Type are encoding the same behavior we need
a measure of equivalence of method local session types. This measure is future-equivalence
“=" as defined by Figure 3.18. In [28], E. Kamburjan defined session types to be future-
equivalent if the histories of all systems described by one session type can be transformed
into the histories of the other session type by renaming futures. In the context of this
thesis, we use a slightly more restricted version of future-equivalence based on a direct,
symbolic comparison of types. However, we argue it is easier to implement and it can
readily be replaced by a less restricted equivalence measure if it becomes necessary in the

future.

In simple terms, we regard two session types as future-equivalent if they are symbolically
equal, with the exception, that if a future is newly introduced in the same position in
both types for the same called method, then those future symbols are treated as being
equivalent.

Example
The following types are future-equivalent:

plram.Await(f, fa). Get fa.Put f
and

Pl pym.Await(f, fb). Get fb. Put f

And these two types are not future-equivalent (please note, that a different method on
a different actor is called in the beginning):

plramiAwait(f, fa). Get fa. Put f
and

q!fbmg Await(f, fb). Get fb. Put f

70

For a detailed definition of future-equivalence, see the inference rules defining it in
Figure 3.18.

71

L if suby (opre)(t) = (Active, f,)

roject’,(L) =
proj f((Tpres Opost)) {Skip otherwise

where L € {p!;sm,Put f’, Get f', Get f' (C) ,Await(f', f""), Skip}
project; (p? M (Opre, Tpost)) = Skip
project}(React I’ (Tpre, Opost)) = Skip

project;(L) if project'}(L’) = Skip
project’;(L.L") = < project';(L') if project'; (L) = Skip
project’s(L).project’s(L') otherwise

project? ((LC <0'0, Uéj>)* <Upre7 Upost>) =
project’s(L® (0v), 07)) it Am.((f,t,m),...) € subp(opre)

A3m.((f,t,m),...) € subg(cl)

(project’s (L (ov), o))" if project's (L€ (0¢,, 0/)) # Skip
Skip otherwise

project’} (@ {p} (Lic)iel <Upre70post>> =

P {(projecttf) (LZ-C)Z-GI} if Hi.project;(LiC) # Skip

Skip otherwise
project? (&f’ {(Li(c)iel} <0'prea O'post>) =
project}(Li(c) if introducednBranch(t, f, Li®, opre)
fixed if fixed =

identicalBranches(t, f, (L; ;1)

prefix. Get f' & {(C; : branch;),., } if (prefix, (C;,branch;);cr) =

A >1

extractBranchLabels(t, f, (L;%)icr)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
(3.39)

(3.40)

(3.41)

(3.42)
(3.43)

(3.44)

Figure 3.16.: Projection function for producing method local session types from local

session types for a given future f € F

72

introducedInBranch(t, f, L (0,0") , opre) =
Vm.((f,t,m),...) & subgp(opre) (3.45)
A Im.((f,t,m),...) € subp(c”)

extractBranchLabels(t, f, f', (L)icr) =

arg min (|prefix|)
(prefix,(C; ,branch;) ;c r) €Splits

(3.46)

where Splits = {
(prefix, (C;, branch})c;) |
Jig € I. (prefix, -,) € splitOnGet(L;,“t, f, f')
AYi € I. 3prefix;. (
(prefix;, C;, branch;) € splitOnGet(L;®, t, f, f')
A prefix; = prefix (3.47)

fut

AV]EIZ#]—)CZ#C]

)
AVi e I branch! branch; if branch; # 0
7 . L=
! Skip otherwise
}
splitOnGet (L (0pre, Opost) s L, f, f') = (3.48)
{(0,C,0)} if L®=Getf (C)
A suby (opre) (t) = (Active, f,-)
{(prefix, C,branch.Mp) | if L¢=L;%Lg"
(prefix, C, branch) = splitOnGet (L., t, f, ')} A M, :projectjc(LLC)
U { (M, .prefix, C, branch) | ANMp = project}(LRC)
(prefix, C, branch) = splitOnGet (L, t, f, f')}
1) otherwise
fixed if I#0
)) A fixed = project’.(Lo®)
identicalBranches(r . (Li).c1) = \Vie 1 fivd = project(LS) 49
Skip if I =10

Figure 3.17.: Helper functions and predicates used in method projection, see Figure 3.16.
73

—— SkiIp ——— EMPTYTYPES
FlESkipESkip FlE@E(D
fi=fAVATf
’ — g
PU{(f, [N e M =M fo=fsV faT fs Th=M=M
_ ’
Flmp!fm.M =plpm.M I [Await(f1, f2).M = Await(f1, f3).-M’

f=fViTf TgM=M F=fVIDf Th=M=M

I | Get £[(C)] .M = Get f' [(C)] .M’ T} Put £ [(C)] .M = Puc £/ [(C)] M’

Tl Ms=M, Th=M=M

T f (Mo)* .M = (ML)* .M

REPEAT

Viel.3je JT
VjeJIell

M;.M = M}.M’
M;.M = M}.M’

fut

fut

T {(Mi)ier} M =& {(M);es} .M’

CHOOSE

Vicl.3j€JC; =0
f=fVfrf VjelJ3ielCi=C; VielVjeJC=C;, =T

Flfu_t&f {(Ci: Mi)ier} .M =& {(Cj : Mj)jes} .M’

M;.M = M}.M’

fut

OFFER

Figure 3.18.: Definition of future-equivalence for Method Local Types.

74

3.4. Static Verification

A global session type specifies a possibly branching or repeating sequence of communication
and scheduling actions for every method of a set of methods, see also Section 3.3.2. The
objective of static verification in this thesis is to automatically verify that every method of
an ABS model implements its specified actions in the right order.

For this purpose, we check the ASTs of methods using a type system, see Section 3.4.3.
The subset of the ABS language we are operating on is presented in Section 3.4.1. Our
mapping from actors in a session type to their representation in an AST is explained in
Section 3.4.2. Finally, we discuss the soundness of our type system relative to the original
one developed by Kamburjan et al. [30] in Section 3.4.5.

Exceptions and Assertions

To simplify static verification, we assume that no exceptions are ever thrown by a method
and no assertions are violated!. If an exception was thrown, this could prevent the progress
of a session. However, we at least ensure that an exception can not alter the control flow of
a method since our type system does not allow try-catch statements. We incorporated
this assumption into our soundness theorems (see Sections 3.4.5 and 3.5.8) and liveness
guarantees (see Section 3.6).

3.4.1. Kernel Language

The SDS-Tool does work with ASTs produced by the abstools compiler for the currently
implemented version of the ABS language (as of 2019-10-08). Therefore, it supports more
language features than Core ABS [27] (e. g. case-statements) but also not the full ABS
language implementation.

Moreover, it only inspects those parts of an ABS model referenced in the session type
specification used for verification. For example, the suspend-statement causes a compu-
tation to unconditionally suspend its execution and such an action can not be specified in
a session type. Thus, if suspend is used in a method m which is specified to be called in
the session type, verification will result in an error. Yet, if m is never mentioned in the
type and therefore has no part in the specified session, m is never inspected and no error

I an assertion is violated, this results in an exception.

75

is raised. Of course, parts of the model not mentioned in the type might interfere with a
session if not checked, we call this a half-open system, see Section 3.4.4 and Section 3.6.

In Figure 3.19 we define a subset of the ABS language which includes all features relevant
to the verification process. If an ABS feature not covered by this language definition is
encountered during verification, it raises an error. Notably, suspend-statements and
synchronous calls e, .m(. . .) are not included. We also omitted the definition of some
language features like pure expressions e,, for brevity. They can be looked up in Deliverable
1.2 of the HATS project [11].

76

sl EEEIRIEE
M ||

®
Il

& &
i

Figure 3.19.:

(B]

interface I [extends I1] {}

class C [T]fd] [implements I*] {[T]fd[= () (8] }
mE

[T)m ([T]x)

{G)

| (D) | Fut{T}

x | this. fd

|

newC’() | !m() | (ep)-get

(v]=(e); | await(g]; | skip; | (e]; | case{} |

if ((e)) [Blelse(B] | while ((,)) (B] | (B] | (T]@=(e); |
return(ej; | ; | assert; \ duration(,);
@ | 98 |

7=

_lco(®) | 1)

ABS sub-language relevant to the verification process. I denotes an interface
identifier, fd a field identifier, m» a method identifier, = a local variable or
parameter identifier and Co constructor names.

77

3.4.2. Actor Representation in ABS

Every instance of a class which is the only member of its COG is an active object as defined
in Section 2.1.1. For verification, we must have a mapping from such instances o in a
model to an actor symbol p of a session type s. We say “o performs role p in s”. The
following complications must be considered:

* Given an object reference in a method context, it is non-trivial to decide whether it
points to an object mapped to a specific actor.

* Dynamic enforcement, see Section 3.5 requires AST modifications on the class level.
Thus, it affects all instances of a class.

* In ABS, objects can only be referenced by their interfaces and interfaces can be

shared by multiple classes.

Thus we decided on the following restrictions on ABS models for them to be verifiable.
They avoid elaborate points-to analyses and permit class-wide AST modifications:

1. Roles of a session type must be implemented as classes.

2. A class performing a role must have exactly one instance in the whole model which
is created in the main block.

3. Classes implementing roles may not share interfaces.

4. A class implementing a role must have the same name as the role.

This way, a mapping from interface identifiers to actor symbols can be created for
static verification. The computation of this mapping has been formalized as a function
interfaceMapping in Figure 3.20.

Please note, that requirement 2 is not thoroughly verified by the type system introduced
in the next section. Instead, Section 3.4.4 presents a separate strategy to enforce it.

78

interfaceMapping : 22" x ClassDecls* x InterfaceDecls* — (Interfaces — Actors)
interfaceMapping(A, Cl, In) = {(I,C) |
(C,Is) € classnterfaces(Cl,In)
NCeA
NI €ls
AP, Is") € classInterfaces(Cl,In). (
C'e A
AlsnIn# 0

classInterfaces(Cl,In) = {(C,Is) |
class C ... implements I ,I,,...,I, {...} €Cl

NIs={L,Is,...,I,} U U superlInterfaces(I’,In)
I'G{Il,lg,...ln}

superInterfaces(I,In) = Igjeet U U superInterfaces(I’,In)
Ileldirecr

where Lgirect = {Ih Ir,...1, ‘

interface I extends I ,I,,...I, {...} €ln

Figure 3.20.: Formalization of the mapping from ABS interface identifiers to session type
roles.

79

3.4.3. Type System

Static verification is performed using a type system expressed by a set of inference rules,
see Figures 3.21 to 3.23. It bears some similarities to the type systems used for verification
by Kamburjan et al. in [30] and [29]. However, we leave the task of data type checking
to the abstools compiler and focus solely on the verification of a session type. Our type
system also aims to be more practical, that is, we try to give programmers more freedom in
designing their models if possible. For example, all statements and control structures which
do not influence or violate a session are ignored during verification, see rule COMMINERT
etc.

The rules in Figure 3.21 apply to the structure of an ABS model: Classes, methods and
the main block. Figures 3.22 and 3.23 operate on the contents of methods i. e. sequences
of statements, whereas Figure 3.22 contains all the axiomatic rules. We write

€:s

to say the AST elements € comply with session type s. The judgments within the rules use
the following environments:

A: I — Actors Environment A maps interface identifiers to actor names. It is first
introduced in rule MoDEL using the function interfaceMapping, see above section.

F C F F contains all future symbols used in the session type specification for which we
verify. It is derived from the information gathered by analysis F.

I': F — Varldent T maps futures to identifiers of local variables which have been used
to store the futures’ results.

Structural Rules

Verification always starts with the rule MopEL being applied to the whole ABS model. It
checks that no interfaces of classes with a role intersect by making sure that every actor is
accessible through A. Further verification is delegated to the rules CLassEs and MAIN.

Rule MaIn checks whether there is an asynchronous call e, ! m(%) in the main block

implementing the initial action 0 EN q: m of the session type. This also requires that the
callee expression of the call is an object whose interface is mapped to ¢ in environment A.
We write interface(e,) to retrieve the identifier of the interface that types e,. MAIN also
checks that there are no other calls to actors of the session type () = ...) and that all

80

classes with roles are instantiated as their own COG. The last part is symbolized by the
function checkForNew.

Rule CLasSEs verifies that for every actor p in the session type there is a class Cl’ in the
model taking up its role (same name). Further verification is delegated to the Crass rule.
It operates on the projection of the session type on p, as CI' only needs to implement the
behavior of p. Since the rule METHOD needs to know which actor is described by the local
type, p is passed on as an environment.

The Crass rule ensures that all methods of a class conform to the session type. Please
note, that the rule only accepts classes without an init-Block or run-Method. An init-Block,
if present, is executed synchronously after a class has been instantiated and a run-Method
asynchronously after the init-Block finishes. Both kinds of behavior can not be encoded in
our session type language and are thus forbidden for all classes taking up a role?.

For all futures f targeting a method m of an actor p, rule METHOD requires m’s body
to exert the behavior described in the session type for f. This behavior description is
extracted by method projection. If there is no future introduced by a call to m, the method
is ignored by the verification process.

Statement Rules

The remaining rules verify the behavior implemented by the bodies of methods. Their
underlying principle is that for all statements influencing communication and cooperative
scheduling there must be a corresponding action described in the type. Also, the order of
actions must be adhered. All statements which do not exercise such influence are ignored
which is expressed by rule ComMINERT. The predicate commlnertr.r.a decides whether a
statement or expression falls under this category. It has been formalized in Figure 3.25.
For a sequence 5 of statements we write commlnertr.r.a(5) to convey that every statement
of the sequence fulfills the predicate.

Rules RETURNNOMsG, METHODEND and RETURNMSG are all axiomatic rules which apply
to the end of a method. Therefore, they require the session type to be a resolving Put f type
and be the last action specified. A method can either end if there are no more statements,
which is handled by METHODEND, or it can end with a return-statement, which is
handled by the other two rules. We require the expression of a return e; statement
to not have any effects on communication or scheduling, like a call to another actor:
commlInertr,p.a (e). If a session type specifies a constructor, we also check whether the type

2ABS classes also support so-called recovery-Blocks which can handle uncaught exceptions. We also forbid
those.

81

constructed by it is the same as the type of the return expression e: typeOf (e) = typeOf (C).
This is not precise, since another constructor of the type could have been used to construct
the expression. However, for a more precise check another analysis of control flow etc.
would be required to determine how e has been computed. Because of the time constraints
applying to this thesis we leave development of this check for future work. Meanwhile,
even if a method implementation does not use the constructor specified in the type for
its return value, the remaining model execution will still continue as specified. Notably,
control structures implementing Offer-Types must still check values against constructors
as specified, see rule OFFER.

Rule TyPEEND is the last axiomatic rule. It applies if there remain no actions in the
specification (which is represented by “()”) and all remaining statements have no effect on
communication or scheduling. The rule is necessary to handle nested types which do not
end with a resolving action, for example whenever rule WHILE is applied:

TyPEEND

D F A0
I, F; Al this.f = o!m(); :plym

CALL

WHILE

I;F; Al while (i < n) { this.f = o'm(); } : (plym)".Putf

It can not be used to verify the end of a method, since all method local session types end
with a resolving action which can only be handled by the other three axiomatic rules.

The remaining non-axiomatic rules allow the verification to process a method body state-
ment by statement. Rule CALL verifies interactions with other objects. To keep the
verification process simple, we decided on the following restrictions:

1. futures produced by an interaction of a session must be stored in fields so that the
future is accessible to other methods of the object.

2. futures must be stored in fields of the same name as the future symbol in the type.
Otherwise, we would have to track across methods where a future has been stored.

3. If there is a future f in the type, a field this. f can only be written by the statement
which issues the call producing future f.

Rules CaLL and FIELDASSIGN ensure these restrictions. Please note that unchecked
methods not participating in a session which could potentially modify fields are no

82

issue, since the schedulers created by our dynamic enforcement (Section 3.5) strategies,
prevent them from being executed. See also the safety guarantee in Section 3.6. Similar
to rule MaIn, the environment A is used in rule CALL to verify that the callee is the one
mentioned in the specification.

Rule FIELDASSIGN complements CALL; that is, it requires that no fields with future names
are written if its not an interaction of a session. Also, an expression assigned to a field
then may have no side-effects on communication or scheduling.

For storing the results of fetching actions Get f [(C')] similar concerns as with futures apply.
We decided against demanding to reserve fields for storing get-expressions and to use
local variables instead. While there may be only one call statement per future introduction,
fetching actions may be specified an unlimited number of times requiring reservation
of multiple fields. Therefore, local variables are more practical than fields in this case,
especially since futures are already accessible for get-expressions across methods. These
are the requirements on fetching actions as checked by rules GET and VARASSIGN:

1. get-expressions must be stored in local variables. (See rule GET.)

2. This can be during a variable declaration or by assignment to an existing variable.
We remember the location per future in environment I'. (See rule GET.)

3. after such an assignment or declaration, the variable may never be assigned again.
(See rule GET and rule VARASSIGN.)

4. in half-open systems (see Section 3.6) get-expressions can halt the execution of
a method depending on an actor which is not part of a session. Therefore, get-
expressions are permitted only if they are part of the specification. Hence, the
predicate commlnertr.p.a is never fulfilled for get-expressions.

If the specification requires a method to release control until another future is ready, rule
AwarT checks that its body contains an await-statement waiting on a field with the name
of the awaited future.

Rule Brock unpacks blocks so that they can be analyzed by the other rules.

Since the Skip type specifies no action, rule Skrp allows the verification to process it by
continuing with the remaining type.

Rule WHILE checks, that repetition types are implemented by a while-loop. It verifies the
loop body against the nested type and the remaining statements against the remainder

83

of the type. Since there may be loops whose statement block has no influence on com-
munication or scheduling within a session, those must be handled by rule CoMMINERT.
We prevent the use of rule WHILE on them by checking the body against the predicate
commlInertr,p.a. Please note, that this makes it impossible to verify session types of the
form (Skip)®, but those are never produced by projection.

For the verification of Offer-Types, we decided to only allow implementations which make
use of a non-nested case-statement. This is because rule OFFER can then simply match
the labels of its branches against constructor patterns of the statement. To comply with
a Offer Type &; {...}, a case-statement must use a local variable as input expression
which stores the result of f since f decides which branch to take. This information is
gained from the environment I': v € I'(f). The OFFER rule also requires that there are
as many unique constructor patterns as there are labels (same index set I). For each
matching pair of constructor case pattern and label (C} = C}), the case’s body s; and
the statements 5 after the case-construct must adhere to the specification M; belonging
to the label and the remainder of the type M: “s;.5 : M;.M”. We do not check that
the constructor case patterns are exhaustive for the data type of the checked expression.
However, if they are not, an exception is thrown at runtime when encountering a value
which fits none of the patterns. We regard this as an instance of runtime-verification,
see also Section 3.7. Analogously to the WHILE rule, OFFER is only applicable to case-
statements with at least one branch affecting communication or scheduling within the
session: ~commlnertr.p.a(s;).

Rule CHOICE is applicable, if there is one type branch M; specifying the behavior of the
given statements s;53. Also, all leading control flow structures containing statements
influencing the session must first be resolved by the IFNOOFFER, IFELSENOOFFER and
CaseNOOFFER rules. These ensure that such control flows are checked against the
specification, eventually leading up to an application of the CHOICE rule:

ALL

—— COMMINERT
. T;F; AR skip; : Skip. M’
CHOICE CHOICE

. T;F AR this.f = o'm(); : @ {plym,Skip} .M’ " ;A skip; : @ {p!ym, Skip} .M’

C.
. T;F; AR this.f = olm(); :plym.M

IFELSENOOFFER

F;F;AF if (True) {this.f = o!m();} else {skip;} : & {p!ym,Skip} .M’

Those rules can however not be used if the first component of the session type is an Offer-
Type, because those may only be implemented by a specific kind of case-statement, as
mentioned.

84

A = interfaceMapping(subp(cpost), CL, In)

Vp € subp(opost). . A(I) =p A s Cl:G* (Opres Opost) A g B G°¢ (Opre, Tpost)

l_Model DA F In Cl B : G (0pre, 0post)

MoDEL

Vp € subp(opost). ICI' € CL. (p = name(Cl') A p; A
A

Cl' : project® (G (pre, Tpost)))

Class

CLASSES

Ccl:G® (0pre, Opost)

Classes

VmEM.p;Almm:Lc T run(...) {...} ¢ M

CLASS

p;Age class C [(T f)] [implements If] {[T fl=ep)]] M} : L©
F={f|(f,-) € subs(opost) }
Y(f,p,m) € subr(opost). 0; F; A |—§ :project?(LC (Opre, Opost))
METHOD
p;Alm T m(T z) {s} : L (Opre, Opost)
Al(interface(ep)) = q checkForNew (subg (cpost), 5T, 5R)

s= [[Tv=lep!m(d,) 0 = subs(opost) N {A(interface(e”p)) | entm(...) € Calls(sp)U Calls(ﬁ)}

MaIN

Ay 555104‘]:m<'7’>-G<'7Upost>

ain

Figure 3.21.: Rules of the type system for static verification (Part 1).

commlinertr;r;a(e) METHODEND
RETURNNOMSsG T F:-A l_Q) . Putf
)) .

F;F;AI— return e; :Putf

commlInertr;p.a(e) typeOf(e) = typeOf (C) commlnertr;r;a (3)

RETURNMSsG

F;F;AI— return e; :Put f[C] F;F;A|_§1@

TypPEEND

Figure 3.22.: Axiomatic rules of the type system for static verification of method bodies
(Part 2).

85

A(interface(ep)) =q T F;A |—§ M
F;F;Al— this.f = e,'m(ep); 5:¢ym.M

CaLL

fd¢ F commlinertr;pa(e) T F;A |—§: M
T F; Al this.fd = e; 5: M

FIELDASSIGN

Vf g T(f) Tf =T Ui}l FsAl5: M
T;F; A [T] v = this.f.get; 5:Getf[(C)].M

GET

Vi v ¢ T(f) comminertr,ma(e) T;F;AF5:M
I‘;F;Al— v ==e€; s:M

VARASSIGN

F;F;Al—E:M

AwaIT

[;F; Al await this.f?; 5:Await(f, f).M

F;F;Al—E:M P;F;Al—EQ:M
SKIP BLock

T, F;Ab5: Skip. M I P AR {5} ¥: M

commlnertr;p;a(s1) T F;A |—§ M

CoMMINERT

F;F;Al—slﬁzM

Figure 3.23.: Rules of the type system for static verification of method bodies (Part 3).

86

—commlInertr;r;a (37) F;F;Al—ﬁz M F;F;Al—ﬁz M

WHILE

P;F;Al— while (e,) {51} s2: (Mi1)" .M

VielIVjel (i#j = Ci#Cj)
vel(f) 3iel -comminertr;p;a(s;) ViEI.EIjEI.(C'{:C’j/\F;F;Al—sZE:Mj.M)
T F; A case v {(Cy(p7) => si)icr} 5: & {(Ci: My)ier} .M

OFFER

Ji€ LT, F; Al si53 : Mo M
—commlnertr,r.a(s1) s is neither an if — nor case-statement

0P A 5155 @ {(Mi)ier } .M

CHOICE

NP AbFsis: MM TR AR5 M
—commlInertr;r;a(51) M begins not with an Offer-Type

TP AR if (e,) {571} 5: MM

IFNOOFFER

F;F;Al—sTE MM’ F;F;Al—EQ:M.M'
—(commlnertr,r;a(31) V comminertr,r;a(35z2)) M begins not with an Offer-Type

TP AR if (e,) {57} else {s3} s5: M.M’

IFELSENOOFFER

3i € I.comminertr,;a(s)) Vi€ LT, F;AFsi5: MM
M begins not with an Offer-Type

F;F;Al— case e, {(pi => Si)icr} 5: M.M’

CasENOOFFER

Figure 3.24.: Rules of the type system for static verification of method bodies (Part 4).

87

commlnertr.p.a : (Statement U Expression) — B
commlnertp,p.a(x) =
x = skip;
V= assert ...;
V= duration(...);

V z is an ABS pure expression

Va = e; Aeisanexpression Acommlnertr.p.a(e)

Va=A{s} Acommlinertr.p.a(3)

va= 1if (...) {s} Acommlnerty,p.A(3)

va= 1if (...) {si} else {s3} Acommlnertr.p.A(51) A comminertr.p.a(52)
Va= case ... {(pi => si)icr} AVie I.commlnertr.p.a(s;)
Vo= while (...) {s} AcommlInertr.p.a(3)

Ve=T X = e; ANcommlnertr,p.a(e)

Vz =z = e; Acommlnertr.p.a(e) NBf.x € T(f)

Vo= this.fd = e; AcommlInertr,p.a(e) Afd ¢ F

V= e,!'m(...) APp.p= Alinterface(e,))

Vo= new CO(...) APp.p= A(interface(new C(...)))
V=10

Figure 3.25.: Predicate to check, whether a statement or expression does not influence
communication or cooperative scheduling within a session.

88

3.4.4. Additional Verification Steps

As mentioned, the introduced type system does only inspect those parts of an ABS model
directly referenced in a session type. Thus, the following issues arise:

1. Classes implementing actors may be instantiated outside the main block in some
class which is never inspected.

2. Non-inspected parts of a model might communicate with members of a session and
disrupt it, though we give a basic safety guarantee. See Section 3.6.

Issue 1 is checked statically. The implementation of our tool searches the model AST for
new-expressions. If any instantiations of classes having a role in a session type are spotted
outside of the main block, verification fails. Adherence to the requirement of a single
instantiation within the main block is handled by the type system.

3.4.5. Method-Local Soundness of our Type System

Kamburjan et al. present a type system in [30] and [28] which verifies that methods of an
ABS model comply locally with a global session type specification. By extension it also
verifies that the entire model globally complies with the type if (re-)activations of methods
are scheduled in the specified order.

We informally argue that our static verification process exerts the same qualities for the
following reasons:

Similar specification language. Our session types specify the same actions as theirs.
There are only superficial differences. For example, we eliminated the end type.
Instead, the syntactical end of the type implies the termination of all actions. Their
global types also contain no Skip type in constrast to ours. This is only relevant
for branching types where Skip can be used to express that a branch contains no
actions:

89

However, the same can be expressed in their Session Type language by extending
all branchings until the end of the type and placing their end type in one branch:

o Gp.end,
@P end

Stricter validation process The validation performed by our CST Validation process per-
mits fewer specifications than are accepted by their projection. Therefore, the
accepted input language of our static verification process is a subset of theirs. For ex-
ample, we have a notion of scope for future symbols which requires future symbols
to be resolved within the branch or repetition they have been created in, whereas
there is no such restriction on their types.

Moreover, all important checks, e. g. self-containedness of repeated types, are per-
formed.

Similar projection Though our projection process does strongly differ in some instances
from theirs, mostly due to the use of our CST Validation, we argue that the resulting
object and method types also extract all actions relevant to the target object and
preserve their order.

Type system based on same principles Our type system like theirs does compare every
method participating in the specification against its method local type. All simple
actions derived from Ggsomic must be matched by a corresponding statement in the
right order. More complex types have to be implemented with corresponding control
structures.

Our system does however prominently differ in two points, but our objective of static
verification is not compromised due to the stated reasons:

1. We perform no data type checking, but it is delegated to the ABS compiler.

2. More kinds of statements are allowed by the type system for practical reasons
(ComMINERT rule). For example, calls to objects which are not part of a session
are allowed at all times. We ensure that the additionally allowed statements
do not interfere with a session or its progress.

Therefore we claim that the following theorem holds for our type system:

90

Theorem 3.4.1 (Method-Local Soundness of our Type System). Let G be a global session
type. Let M be the set of methods mentioned in G. Let Model be an ABS model. If Model
is typed by G, that is “Model : G” as by the type system of Figures 3.21 to 3.23, then the
implementation of every method m € M in Model locally complies with G. This means,

for every p EN q: m in G, for every possible event history h of Model, the history (h [q) | f
is future-equivalent to a history that fits the regular expression T(projectji (project!(Q))),
assuming m is activated and always reactivated for all suspending statements and no
exceptions are thrown.

See also the formal semantics of global types in Section 2.3.1.

Since activations of methods can interleave in any way in an ABS model which does not
employ User-defined Schedulers, our type system alone can not guarantee soundness on
a global scale. We extend ABS models with schedulers that enforce the (re-)activation
order as specified in G in Section 3.5. This results in the global soundness theorem 3.5.1,
see Section 3.5.8.

3.5. Dynamic Enforcement

We want to achieve the following objectives by influencing the run-time scheduling
behavior of an ABS model:

1. Enforcement of Specified Execution Order. Messages, that is calls, can arrive in
any order due to the concurrency model of ABS, see Section 2.1.3. Also, without
a scheduling function, (re-)activations of methods are scheduled in an undefined
order, see Section 2.2.4. Therefore, the static verification of session types can not
fully guarantee the order of method activations and we enforce it at runtime instead.

2. A Basic Safety Guarantee. Methods and classes which have not been inspected
during static verification may interfere with a session in a model which is not closed.
We want to give some basic safety guarantee for this case.

Objective 2 is discussed in Section 3.6. The following example illustrates objective 1:

91

Example 4: Execution Order Violation
The following local session type for an active object ListView specifies that first some
data must be set and then a user interface is updated to display it:

Controller? gsetData. Put f.Controller? ;updateUL Put f’

The class ListView strives to implement the above type, whereas Controller issues
the calls being received by it:

class ListView class Controller (UI ui)
implements UI { implements ControllerI {
Unit setData(Data d) Unit displayData() {
{ ...} ui'!setData(d);
Unit updateUI() ui'updateUI();
Loaee | }
} }

Since method displayData() of the Controller class does not block to await the
completion of the data message, the following execution orders for an instance of
ListView are possible:

setData, updateUI
updateUlI, setData

The second order violates the session type specification.

We approach these issues by enforcing a scheduling policy at runtime which locally ensures
the order of invocations for an active object as described by a local session type. First, a
description of the scheduling policy as a Session Automaton is derived from the session type.
Session Automata are a subclass of Register Automata [31] and have been introduced
by Bollig et al. [8]. Kamburjan et al. developed a method to derive scheduling policies
represented as Session Automata from session types in [30]. We describe the construction
of an automaton in slightly more detail, see Section 3.5.1, and implemented it as part
of the SDS-tool. Next, the AST of all classes implementing actors of a session type is
extended, so that it integrates such an automaton and makes scheduling decisions based
on the automaton’s state, see Section 3.5.6.

92

Global CST Validation & Object Local Extraction of Session Scheduling Functions & AST
Session Type Projection Session Type Scheduling Strategy Automaton Class Modifications Extension

Extending the AST of classes so that they can enforce our scheduling policies is unfor-
tunately not possible in the current ABS implementation. Therefore, we apply a set of
modifications to the ABS compiler, see Section 3.5.5. There is also a class of session types
for which activation order can not be reliably enforced using schedulers. We review this
issue in Section 3.5.7. Finally, using our scheduler extensions, we extend the soundness
theorem 3.4.5 in Section 3.5.8.

3.5.1. Session Automata
First lets define our variation of Session Automata based on [8] and [30]:

Definition 3.5.1 (k-register Session Automaton). A Session Automaton is a tuple A =
(Q,q0,A, F). Q denotes the finite set of states, ¢ € @ the initial state and F' C @ the set
of final states. We define the alphabet of labels as

Y = {InvocREv(m), ReactEv(m) | m € Methods}

We denote A C @ x (X x R) x @ as the finite set of transitions. R is the finite set of
registers where |R| = k.

If we treat a Session Automaton A as a nondeterministic finite automaton (NFA), then we
call its language Lgmp(A) C (X x R)* the symbolic language of A. Its elements are called
symbolic words. The data language Lgqq(A) C (X x F)* of A is the set of data words on
which there exists a run of A.

Definition 3.5.2 (Runs of Session Automata). Let I = {0...n} and IT = T U {n + 1}.
Let S = R — ({e} U F) be the set of data stores which map a register to the future stored
in it or nothing (¢) if it is empty. For a Session Automaton A = (@, qo, A, F') a sequence
(¢i,0:)ici+ € (Q x S)"*2 is a run of A for a data word (v;, f)ic; iff the following holds:

0o = R x {e} and for all i € I there exists a method m and a register r so that
either v; = InvocREv(m) and (g;, (InvocREV(m),r),qi+1) € A and 0,41 = o4[r == fi]
or v; = ReactEv(m) and (qi, (ReactEv(m), 7’), qi+1) € A and Oit1 = 05 and O'Z‘(T') =f;

93

Intuitive Explanation

Every state of a Session Automaton A can be interpreted as a progression point of a
session. The transitions which are possible in this state model which method activations
are allowed at this point in the session. A label v = InvocREv(m) denotes that a method
m is being invoked. A label v = ReactEv(m) denotes that a method m which has been
suspended is reactivated. The data word character (v, f) then models that the activation
denoted by v is represented by future f. A transition (q;, (InvocREv(m),r), g2) models
that in state ¢; the scheduling policy described by A allows an activation (InvocREv(m), f)
resulting in state ¢o. Also, if this activation is scheduled, f shall be stored in register r.
Analogously, a transition (q1, (ReactEv(m),r), ¢2) models that the policy allows in state ¢;
to transition into g» when reading a reactivation (ReactEv(m), f). However, this is only
permitted if f is the same future as the one stored in register r.

We can construct a scheduler from a Session Automaton so that it implements the schedul-
ing policy described by it. This is achieved by simulating the automaton as part of the
scheduler. The scheduler takes activations which are ready to execute as input and sched-
ules one of them which matches a transition of the automaton’s current state. If none
match a transition, then activation of a process is delayed until a matching one is available.

Since we believe it supports a better understanding of the behavior of schedulers in our
examples, we also give a model of such a scheduler. Its states are the elements of a run
and the sequences it reads are data words.

Definition 3.5.3 (Session Scheduler). For a Session Automaton ;’4 = (Q,q0,A,F), we
define its Session Scheduler as a transition system (Q, go, A) where @) = @Q x S is the set of
states and ¢y = (qo, R x {e}) is its initial state. We define

ACQxESxFxQ
A={((g,0),v,1,(¢,0") | (g, (v,7),d) € A
A
v = InvocREv(m) A o’ = olr = f]
Vv =ReactEv(m)Ao(r)=fAd =0
)
}

as the system’s transition relation.

94

The following example demonstrates how the concept of Session Automata can be used to
enforce the execution order of example 4:

Example 5: Invocation Reordering Via Automata
The following session automaton A encodes a scheduling policy which enforces the call
order as specified in the session type of example 4:

(InvocREv(setData), (InvocREv(updateUI), 1)
RoLE——oy ®

Now, lets illustrate the behavior of the scheduling policy described by A by simulating a
run using its Session Scheduler where the invocations of setData and updateUI arrive
in the wrong order at ListView:

State Available activations Resulting State

1 (qo,{(r0,¢),(r1,€)}) - no change

2 (qo,{(ro,e),(r1,e)}) (InvocREv(updateUI), f) no change

3 (qo:{(ro,€),(r1,€)}) (InvocREv(updateUl), f), (g1, {(ro, f"), (r1,€)})
(InvocREv(setData), f')

4 (g1 {(ro, f"),(r1,€)}) (InvocREv(updateUl), f) (g2, {(ro, /), (r1,)})

5 (g2, {(ro, f"),(r1,)}) - no change

In line 2, only the method updateUI can be activated but this is not permitted by the
session automaton in the initial state. Thus, there is no viable transition in the Session
Scheduler. However, as soon as an activation of method setData is available in line 3,
the system can progress.

The next example illustrates why we need registers to remember the future of an invocation
so that we can discern reactivations of the same method:

95

Example
Let a be the actor whose behavior is specified by the following object local type:

p? fym.
q!fqlm’Await(fo, fq1)-

Pl m.
q!fq2m’Await(f1, fq2)-

React fy. Put fp.

React f;.Put f;

The type expresses that a receives two calls from actor p on method m. Both times, a
calls method m' on actor ¢ and waits for the result. The type also demands, that after ¢
completes a call, the computations of a still complete in order of their initial invocation.
This Session Automaton A describes a scheduling policy for a which allows to enforce
this order:

(InvocREv(m),ro)m(lnvocREv(m),rl)/\ (ReactEv(m),ro)m (ReactEv(m),r1)
—(®) (@ @ @ @

In following run of A’s Session Scheduler, the second call to ¢ finishes before the first one.
This makes the reactivation of the computation denoted by future symbol f; possible
before the reactivation of fj. Nevertheless, the scheduler compares the future of the
reactivations against the ones stored in its registers. This way it is able to discern the
two reactivations. Consequently, it delays the reactivation of f; in line 3 and waits for
fo to complete instead:

96

State Available activations Resulting State

1 (g0, {(ro,), (r1,€)}) (InvocREv(m), fo) (q1,{(ro, fo), (r1,€)})
2 (q1,{(ro, fo),(r1,€)}) (InvocREv(m), f1) (g2, {(r0 fo), (r1, f1)})
3 (gq2,{(r0, fo),(r1, f1)}) (ReactEv(m), f1) no change

4 (a2,{(ro, fo),(r1, f1)}) (ReactEv(m), f1), (g3:{(ro, fo), (1, f1)})

(a3, {(r0, fo), (r1, f1)}) (ReactEv(m), f1 (q4,{(r0, fo), (1, f1)})
(q4,{(ro0, fo), (r1, f1)}) - no change

Our last example in this subsection shows why a simple sequential representation instead
of an automaton is not sufficient to describe scheduling policies. Automata allow us
to describe repeating and branching session types through circular paths and multiple
possible transitions per state:

Example
Imagine the following object local type with branchings and a repetition:

7+ mg. Put f,, :
p?fom.Putfo.&f P faTa Ja
p?fb my. Put fj

This Session Automaton describes a scheduling policy which enforces the call order as
specified by the type:

(InvocREv(my), r4)

(InvocREv(m), o)

(InvocREv(myp), 1)

97

3.5.2. Automaton Generation

Function genAutomaton of Figures 3.26 to 3.28 formalizes the generation of a Session
Automaton from an object local type. The resulting automata describe a scheduling
policy which enforces the invocation and reactivation order as specified by the type.
Our formalization carries out the construction principles as outlined by [30], though we
eliminate e-transitions after the construction and transform the resulting automaton into
a so-called symbolically deterministic automaton, see Section 3.5.3. e-Transitions simplify
the construction process, but automata without e-transitions on the other hand are more
straightforward to transform into AST-extensions. That is why we extend the structure of
transitions A to allow for e-transitions during the application of genAutomaton:

AC@QxTxRxQ)U(Qx {e} x Q)

The following list gives an overview of the construction principles. Below it is a more
detailed explanation of the formalization.

Case 1 Receiving types p? ¢m result in an automaton with two states. It allows a transition
from the initial state to the second, final state when an invocation of m can be
activated. The automaton describes a scheduling policy which allows to schedule a
single invocation of method m.

@ (InvocREv(m),rg) @

Case 2 Reactivation types React f also result in an automaton with two states. It also has
a single transition from the initial to the second, final state. The resulting automaton
describes a policy where a single reactivation is allowed. Only the future in the
register where f was stored at its first activation may be reactivated.

@ (ReactEv(m), r) @

Case 3 Automata for concatenated types L1.L4 are constructed by concatenation of the
automata generated from L, and L. The described scheduling policy follows first
the behavior specified in L; and then the behavior of L.

98

Case 4 For repetitions (L)*, first the automaton of L is constructed. Then, cycles are
introduced by adding e-transitions from the final states to the initial state. Since a
repetition may not take place at all, the initial state is also made a final state.

The produced automaton describes a scheduling policy according to the behavior
described in L but also allows this behavior to repeat due to the cycles.

Case 5 The automata for the branching types @ {(L;):cr} and &y {(L;);cr} are com-
posed by generating automata for every branch and computing their union. These au-
tomata encode the scheduling policies induced by types (L;);cr. The policy branches,
whenever the behavior specified in the types diverges.

99

Case 6 For all other types, an automaton with a single, final state and no transitions is
generated. See Equation (3.53).

Construction Details

We denote the set of all Session Automata states by Q and the set of all Session Automata
by A. The genAutomaton function takes an object local type, a set of used states Q4
and a future-method-register mapping R;,qp as input, see formula 3.50. It outputs a
Session Automaton and an updated future-method-register mapping. The object local
type parameter is the type from which a Session Automaton shall be derived. For some
types, we must construct sub-automata and recombine them. This is easier to implement
if we make sure that their states do not intersect. Therefore, the only cases where new
states are needed, which are Equations (3.51) to (3.53), ensure that no states from Q.4
are used for construction. Consequently, the other cases, e. g. Equation (3.55), pass on the
set of used states between recursive uses of genAutomaton. The same reasoning applies
to the mapping R and the register names it stores. Equation (3.51) notes in Rpnqp
which method was used to produce a future and in which register it is stored by the
corresponding InvocREv transition. This information is required by Equation (3.52) to
construct ReactEv transitions.

We now examine the formalization for the individual cases:

100

Case 1 - Eqn. 3.51 Given a receiving type p?sm, an automaton is constructed from two
new states ¢p and ¢;. They are connected by a single InvocREv transition for the
invoked method as specified in the session type. qq is the initial and ¢; a final state.

Case 2 — Eqn. 3.52 This case is very similar to Case 1. The only difference is, that for a
type React f a ReactEv transition is encoded.

Case 3 — Eqn. 3.55 For a concatenated type L;.L» automata A; and A, are constructed
for L, and Lo respectively and then concatenated. Concatenation is defined as
function concatAutomata in Figure 3.29. It works by inserting a e-transition to
the initial state of A, outgoing from a set of states of A; we call Qg Also, the
final states of the resulting automaton are replaced with a set F'. In this case, the
outgoing states are the final states F, of the first automaton Qg = I, and the
new final states will be the final states I}, of the second automaton. We added the
parameters (g and F to the function concatAutomata since this enables us to
implement Case 5 also via a variation of concatenation.

Case 4 - Eqn. 3.54 For repeated types (L) an automaton is constructed from L first.
Then e-transitions are added from its final states gy to its initial state qo, forming
cycles. o is also added as a final state.

Case 5 — Eqn. 3.56 For branching types @ {L1, La, ... Ly} and ® { Ly, Lo, ... L, } a“head”-
automaton is constructed from the first branch L; and a “tail”’-automaton for the
branching type @ {Ls, L3, ... L,, } of the n — 1 remaining branches. The base case
of this recursion on a branching type is the case where no branches are left (n = 0)
and its handled by Case 6. Therefore, Equation (3.56) has the requirement n > 0.

Next, the union of the “head”- and “tail” automata is computed by a variation
of concatenation. This time, the e-transitions originate from the initial state of
the “head”-Automaton (Qgue = {Ghead;0})- Also, we keep all final states (F' =
Fhead U Frain)-

101

%map _ 2]—'><Methods><R

genAutomaton: L X 29 % Rimap — A X Rmap

genAutomaton(p? ym, Qused; Rmap) =
(
({QO, Q1}a q0, {(q()v (ITWOCREV(m)v ’I“), Q1)}’ {ql})7
Rmap U {(f’ m, 7’)}
)

where q0, q1 ¢ Qused
and V', m'. (f',m',r) ¢ Rmap

genAutomaton(React f, Qused, Rmap) =

(
({90, @1} 90, {(q0, (ReactEv(m),7),q1)},{q1}),
Ringp

)

where qo, ¢1 ¢ Qused
and (f, m, ’I“) S Rmap

genAutomaton(L, Qyuseq; Rmap) =

(
({90}, 90,0, {q0}),
Rmap
)
where ¢ §é Qused
and L ¢ {React f,p?ym, & {(Li)icr } ,® {(Li)ier }, (L')" |
f€FNApeActors \m € Methods N\L' € LAT #DAVi.L; € L}

(3.50)

(3.51)

(3.52)

(3.53)

Figure 3.26.: Formalization of the simple automaton generation cases Case 1, Case 2

and Case 6.

102

genAutomaton((L)" , Quseds Rmap) =
(

Q/
0
AU{(qfr,v,q1) | a5 € F A (qo,v,q1) € A}, (3.54)
FU{q}
),

R;nap
)

where (@', q, A, F), Rygp) = genAutomaton(L, Qused, Rmap)

genAutomaton(L1-L2, Qused; Rmap) =

(

concatAutomata(Ai, As, F1, Fy),
R;,'mp (3.55)
)
where (A1, Ryqp) = ((Q1, -, F1), Rigp) = genAutomaton(Ly, Qused> Rmap)
and (Ag, Rpgp) = ((- -, F2), Rpygp) = genAutomaton(La, Q1, Rpngp)

Figure 3.27.: Formalization of the automaton generation cases Case 4 and Case 3.

103

genAutomaton((-) {L1, Lo, ... Ly}, Quseds Rmap) =
(
concatAUtomata(Aheada Atail, {Qhead;o}v Fheaa U Fi tail)
R//

map
)

where (Aheadv R;nap) = ((Qheada Qhead;0> Ahead; Fhead)a R;nap) = genAutomaton(Ll, Qused: Rmap)

and (Ataila R;’mp) = ((.- 7Ftail)a R%ap) = genAutomaton((-) {L% Ls, ... Ln} s Qhead R;nap)

and n >0

(3.56)

Figure 3.28.: Function for generating a Session Automaton from a branching session type.
(-){(Li)ic1} is to be replaced with either & {(L;);cs} or & {(L;i)ics } for the
whole definition.

concatAutomata((Qa, Ga;0, Ao, Fa), (Qb, @:0, Dby Fp), Qglue,) =
(
Qa U Qb,
qa;0,
A, UAyUA,,
F
)

where A. = {(qy,¢, q:0) | 49 € Qglue}

Figure 3.29.: Concatenation function for Session Automata using e-transitions.

104

3.5.3. Transformation into Symbolically Deterministic Automata

For Session Automata, Bollig et al. differentiate two kinds of determinism [8]. In short,
a Session Automaton A is symbolically deterministic, if in every state there is at most
one transition for a symbolic word character. It is the same notion of determinism as
if we would regard A as a finite automaton. A is data deterministic if it is symbolically
deterministic and for every point of a run sequence, there is at most one possible successor
for any data word character.

Ideally, since we want to implement schedulers as an extension of an ABS model, we want
to track at most one possible automaton state and avoid nondeterminism. This simplifies
the implementation and is also more memory efficient. Tracking just one state is possible
if our automata were data deterministic. However, we are only partially able to achieve
this property for our automata.

Transforming a generated automaton into a symbolically deterministic one is easy: If two
automata have the same symbolic language, they also have the same data language [8].
Therefore, we can use a variant of the powerset constuction [22] to transform a generated
automaton into a symbolically deterministic one while also removing e-transitions, see
Algorithm 2. e-Transitions are eliminated by replacing states with the closure of states
reachable by e-Transitions [23].

Our automata are constructed in such a way that every distinct future is stored at most once
in one register. Thus, our symbolically deterministic automata are also data deterministic
in regard to ReactEv transitions, since in no run there are two registers storing the same
future.

However, there can still be data nondeterminism regarding InvocREv transitions.

Example 6: Data Nondeterminism in Symbolically Deterministic Automata
Imagine the following object local session type:

p?f,m,

&
! p?fbm.p?fém

The automaton A has been generated from it:

105

(InvocREv(m),r1)

(InvocREv(m), ra)

@ (InvocREv(m), r3) @

The powerset construction for finite automata does not merge the two invocation
transitions of state ¢y. When encountering the data word character (InvocREv(m), f) a
scheduler can not know, which branch of the specification the model execution entered,
since there are two fitting transitions. If it was simulating A as a nondeterministic
automaton, it could apply both transitions and keep track of the two possible states
¢1 and ¢» and the possible data stores associated with them. If later an activation
(InvocREv(m), ') became available, it could still schedule it, since the transition is
allowed in gs.

This is not possible, if a scheduler was only able to keep track of one automaton state.

We decided to simulate just a single automaton state and data store in our AST extension
due to the benefits mentioned above and also because data-nondeterminism occurs only
in the case where multiple branches of a Session Type begin with the same method call.
Instead, we detect data-nondeterminism by checking, whether there is any state in an
automaton (Q, qo, A, F') where two or more InvocREv transitions target the same method:

dq1 € Q. |{q2 | (¢1,InvocREv(m),r,q2) € A} > 1

If such a case is detected, our AST extension issues a warning at runtime.

Please note that a full transformation into a data deterministic Session Automaton is
likely possible by adapting Algorithm 2 so that it merges InvocREv transitions of the
same state when targeting the same method. However, this would require a proof that
the transformed automaton still accepts the same data language, especially since data
deterministic automata are less expressive than symbolically deterministic ones [8]. Due
to the time constraints on this thesis we leave this improvement open as future work.

106

3.5.4. Summary of Automaton Generation Steps

For a given actor p and global session type GG we denote a Session Automaton generated
from G for p by (G, p). It is constructed by the following steps:
1. G is projected on p to the local type L.

2. A Session Automaton A, with e-transitions is constructed from L using the function
genAutomaton.

3. e-Transitions and symbolic-nondeterminism are removed using Algorithm 2.

Therefore

A(G, p) = eNFATODFA(
genAutomaton(
project?(G), 0,0
)

3.5.5. ABS Compiler Modifications

Our goal is to influence the scheduling behavior of ABS classes implementing actors so
that it adheres to a session type. The only method to influence scheduling behavior of a
COG in ABS are scheduling functions (Section 2.2.4). Thus, we use scheduling functions
to decide which activations to schedule depending on the state of a simulated Session
Scheduler. However, the currently implemented User-defined Scheduling Functions are not
sufficient for our purposes. Therefore, we had to apply the following modifications to the
ABS compiler:

1. make the return value of scheduling functions optional.
2. implement the destiny expression of ABS Core.

3. introduce the Any type at the top of the type hierarchy.

These modifications are explained in detail in the following sections.

107

Compiler Modification 1: Scheduling Functions with Optional Return Value

Since there are cases where none of the available activations are viable for scheduling (see
Example 5), scheduling functions must be able to delay activations until a viable one is
available.

This is not possible with the current implementation of scheduling functions which requires
them to have a return value of type Process. We modify the abstools compiler and
Erlang backend, so that scheduling functions require the return type Maybe<Process>.
The type has two constructors:

Nothing
Returning a value created with this constructor signifies that no activation is viable.
Thus, scheduling an activation is delayed by the backend.

Just(Process fromJust)
If a value Just (p) is returned, the activation represented by p is scheduled by the
backend.

Compiler Modification 2: destiny Expression

To be able to store a future which a method is currently computing in a register, there must
be a way to access it. Though Core ABS defines an expression destiny which represents
this future [27], it is not implemented by abstools. Moreover, scheduling functions must
be able to access the future of an activation from a process value p to be able to compare
it to registers. However, this is also not possible.

Therefore, we extended the abstools compiler and implemented the destiny-expression
and a function destinyOf which returns the future of a given Process value.

Compiler Modification 3: Any Type

Future types in ABS carry the type of their result as a type parameter, e.g. Fut<Int>.
However, the Process type representing activations makes it impossible to define a
concrete return type for the destinyOf function that we introduced in the above section:

def Fut<???> destinyOf(Process p) = builtin;

108

We solved this issue by adding a new built-in type Any at the top of the subtyping hierarchy
of ABS, so that

T < Any A Any < Any
for all classes and interfaces T'

where < is the subtyping relation of ABS. Moreover, a flat subtyping hierarchy is introduced
for data types D so that
D <p Any AAny <p Any

where <p is the subtyping relation of this hierarchy. Though it does not allow other
operations, a value of type Any supports equality comparisons. Hence, we can now define
the return type of destinyOf as Fut<Any> which still allows us to compare the futures
of possible activations against registers:

def Fut<Any> destinyOf(Process p) = builtin;

Please note, that of course other solutions to this problem are conceivable which would
not require to modify the type hierarchy. For example, a built-in custom comparison
operator between Process and Fut<T>. However, such a solution would also require us
to modify the ABS type system to not check this operation. Also, Any enables us to define
a register type which can store any future type. This slightly simplifies the generation of
automaton AST extensions in the following section.

3.5.6. Automaton Integration

Now that we have Session Automata to describe scheduling policies and have extended the
ABS compiler sufficiently, we need a method to modify ABS classes so that they schedule
activations as modeled by an automaton’s Session Scheduler. This is achieved by extending
classes to simulate their Session Automaton.

Though a clean separation of a class implementing an actor and its scheduling extension is
desirable from a software engineering perspective, it is not possible due to these limitations:

* scheduling functions are pure, therefore changes to the scheduler’s state must be
performed by the scheduled methods.

109

* the “traits”-feature of ABS allows to modify methods and separate the modification
from a class. It can only insert statements preceding and following the original
method. However, to implement ReactEv transitions, we need to modify the sched-
uler’s state after every await-statement, which is not possible with “traits”.

* state can not be stored as part of the scheduling function. Hence, classes implement-
ing an actor must be extended with fields storing the state of the simulated Session
Scheduler.

The state § € () x S of a Session Scheduler consists of the state ¢ € Q of the automaton
A it has been derived from and a data store o € S of registers. Since @ is finite and we
convert automata into (almost) data-deterministic Session Automata after their generation,
we can represent ¢ in ABS as a single integer field. We denote the injective mapping from
states () to integers by toInt : Q — Z. As the number of registers R is also finite, we can
represent each register as a field storing either a future or initially a placeholder value
(Nothing).

From the above considerations, given a Session Automaton A = (Q, qo, A, F'), we derive
the following concept for simulating a Session Scheduler as an extension of a class C:

Additional Fields The class C is extended with a field Int q = tolnt(qy); of integer
type representing the automaton state. Its initial value is the integer representation
of the initial automaton state ¢q. Also fields

(Register r = Nothing;),cr

are added, where R = {r|(-, (,-,7),) € A}. For abbreviation, we write Register
for the type Maybe<Fut<Any>>.

These fields represent the scheduler’s registers. Initially they store the value Nothing
which signifies that a register has not yet been assigned a future. A future f is
assigned to a register by storing the value Just(f).

Generation of a Scheduling Function A scheduling function schedule?is generated which
takes a list of possible activations and the current state of the Session Scheduler,
which are the above fields, as input:

30f course we use a unique method name for every scheduling function in our tool implementation to avoid
name conflicts.

10

def Maybe<Process> schedule(
List<Process> queue,
Int q,
(Register 7).cr

) = forceInit(() => (body))(queue);

Although we forbid the definition of a custom init-block during static verification (see
Section 3.4), all classes implicitly execute a default init-Block upon instantiation.
Therefore, we need to ensure, that the generated schedule function executes the
init-block first, regardless of the automaton’s transitions. This is implemented in a
second-order function forceInit. If there is no init-block to activate, it evaluates
and returns (body) instead.

For the (body) expression, we generate a case-expression that decides which ac-
tivation to choose based on the transitions possible in the current scheduler state

q:
(body) = case q {
(tolnt(q') => (case ¢');)gcq

This is achieved by filtering the available activations for two criteria:
Either an activation p is a new invocation (its future is not stored in any register)
and there is an InvocREv transition with the same method name as label:

(criterion 1) =
Icontains(set[(r),cr], Just(destinyOf(p)))
&& contains(set[(m)mcimoan], method(p))

where invocM = {m | (¢, (InvocREv(m), -),-) € A}.

Or the future f of the activation p is stored in a register which is used in a ReactEv
transition of the current state q:

(criterion 2) =
contains(set[(r),creaccr], Just(destiny0f(p)))

where reactR = {r | (¢, (ReactEv,-,r),-) € A}.

11

Finally, the first activation from that filtered list is selected, or Nothing is returned,
if there is no activation which fits the criteria:

(case ¢') =
headOrNothing(
filter((Process p) =>
(criterion 1)
| | (criterion 2)
) (queue)

’

The class C is annotated to use schedule as its scheduling function:

[Scheduler: schedule(queue, q, (r)qcr)]
class C implements ... { ... }

Method Modifications Modifications of the state of the simulated scheduler are achieved
by inserting additional statements into the methods of a class. We require two
different kinds of modifications for InvocREv and ReactEyv transitions.

InvocREv Transitions First, we group InvocREv transitions by the method m that
shall be invoked, i.e. the label of a transition is (InvocREv(m),r). For each such
method m, the AST of the method is prepended with a case-statement which
updates the state of the scheduler. The statement is constructed like this:

1. first the case-statement itself derives which transition (¢’, (InvocREv(m),), q¢")
the scheduling function selected. This can be achieved by inspecting the
current state of the scheduler since the method context m is fixed.

If the scheduler is in a state where m should never be invoked, execution is
aborted with an assert False; statement:

case this.q {

(toInt(q') => (case ¢');)qeq
_ => assert False;

2. next, the case statement’s branches update the automaton state q to toInt(q")
and store the future destiny of the current computation in register r:

12

(case ¢')
this.r = destiny;
this.q = tolnt(¢");
(nondeterminismWarning ¢')

3. If the the InvocREv transition could not be selected in a data deterministic
manner (see Section 3.5.3), a warning is printed:

(nondeterminismWarning q’> =

println("Warning..."); if|{q | (¢,InvocREv(m),r,q2) € A} > 1
skip; otherwise

ReactEv Transitions Next, for every method m of C we compute the set Ageqcty
of ReactEv transitions of m:

AReactE\/ == {5 ‘ 6 = (’, (ReaCtEV(m),T‘), ') E A}

Then the AST of the method is searched for possible reactivation points, which are all
positions after await-statements. We do not need to consider statements other than
await statements because the static verification only permits await statements
for suspension. Directly after these reactivation points, a nested if-else-statement
(reactUpdate(AReqctry)) is inserted:

(ifElse(9, A"\ {3})) if |A']>0
(reactUpdate(A')) = NG e A
assert False; otherwise

where

(ifElse((¢', (ReactEv,-,r),q"), A")) =
if (this.q == tolnt(¢’) && this.r == Just(destiny)) {
this.q = tolnt(¢");

}

else {
(reactUpdate(A"))

}

13

(reactUpdate(Apeqcty)) compares the current state this.q to the starting states
of the possible transitions and destiny against the register in the transition label
to determine which reactivation transition had been selected by schedule. If a
transition matches, this.q is updated accordingly. Otherwise, an impossible state
has been encountered and we abort with an assertion.

We give an extensive example illustrating all of the above modifications in the appendix,
see Example 8.

Notation Let C be an ABS class, G be a global type and p be an actor in G. Then
S(G, p, C) denotes the modified AST of C' as by the above concept so that it implements
the scheduling policy described by (G, p).

3.5.7. Limits of Schedulers

Limitation 1 Our schedulers only differentiate invocations by the name of a method.
Therefore, invocations of the same method with different parameter values may be
activated in a different order than the calls have been issued by a client. However,
the ordering is still consistent with the specification, since our session types also do
not encode parameter values.

Example
Given the session type

f f fo
0= p: m'.p—a>q: m.p—q: m.qlfaqlfoplf

and an implementation of m’ which contains these calls

this.fa
this.fb

q!m(1);
q!'m(2);

then the following activation orders are possible for m in ¢, even if ¢ has been
extended with a scheduler derived from the above session type:

m(1), m(2) and m(2), m(1)

14

Limitation 2 Only so-called admissable types whose communication pattern ensures an
activation order of methods can be verified by static methods alone [28]. This is the
original motivation schedulers have been applied in [28] to lift this restriction since
they can enforce activation orders.

However, because messages can arrive in any order in ABS models, we noticed that
there are still some session type specifications where the order of (re-)activations of
methods can not be guaranteed by schedulers.

Example
Imagine the following local session type which types an object ¢:

(p?fbmb- Put fb'p?fama- Put fa)* 'p?f{zma' Put f(;

The following automaton is generated for it:

(InvocREvV(my),10)

(InvocREv(my,), ToKZy(InVOCREV(ma), 1)

(InvocREv(my), 12) (InvocREv(my), T2)

We can fabricate an ABS model where p calls first m; and then m,. According
to the session type, we should have entered the repeating section of the type
and both calls should be executed. However, if the invocation of m, arrives first
at ¢ and the invocation of m,; considerably later, our scheduler implementation
executes m,, first. When the invocation of m;, arrives, the simulated automaton
will be in state g3 and m;, will never be executed.

We want to point out this issue but do not pursue a solution in this thesis due to
the time constraints it is subject to. Therefore, a precise characterization of this

15

class of session types and an algorithm for detecting them remain as future work.
In the meantime, though these types might result in a model execution which can
not progress, our schedulers still ensure a basic safety guarantee, see Section 3.6.

3.5.8. Global Soundness

Now that schedulers dynamically enforce the (re-)activation order of methods at runtime,
we can complete our soundness theorem of Section 3.4.5. Based on Theorem 3.4.1 and
Theorem 2 of [28] we argue that the following theorem holds:

Theorem 3.5.1 (Global Soundness). Let G be a global session type. Let P be the set of
all actors in G. Let Model be an ABS model. Let C be the classes of Model. If the following
conditions hold
(i) Model : G, as by the type system of Figures 3.21 to 3.23
(i) Model is a closed system. That is, every class in C performs a role in G. See also
Section 3.4.2.
(iii) Every class C in C where p € P is the actor whose role is performed by C' has been
replaced by &(G, p, C) (scheduler modifications).
(iv) All possible executions of Model terminate. No exceptions are thrown.
then Model complies with G. That is, every possible history of Model is “captured” by G.

See also the formal semantics of session types in Section 2.3.1.

Requirement (iv) is necessary because we make only a weak liveness guarantee, see
Section 3.6. The implications of models which are not closed are outlined in Section 3.6.

3.6. Liveness and Safety Considerations

By Theorem 3.4.1, our static verification does ensure that methods locally behave like
specified in a session type. This gives us the following weak liveness property:

Let GG be a global session type. Let Model be an ABS model so that Model : G.

For all p EN q: m in G the following holds: If during an execution of Model
the computation symbolized by f is (re-)activated, then all actions of f as
specified in the type are executed up until the next suspending action Rel(q, f')
or resolving action ¢ | f [(C)].

116

There are two exceptions to this rule:

1. An ABS exception is thrown. We ignore the possibility of exceptions being thrown
during static verification due to the time constraints applying to this thesis. Since
our type system forbids try-catch-constructs and recovery blocks, exceptions will
kill their surrounding object.

2. An assertion fails which will also throw an exception. Since we view assertions as a
tool for dynamic verification, our type system permits their use and we also employ
them ourselves for dynamic enforcement.

The property necessitates that a method is (re-)activated and whether an activation
actually takes place is up to the generated schedulers. These can not strengthen this
liveness property due to the following issues:

* we allow for non data-deterministic InvocREv transitions, see Section 3.5.3 and
Example 6.

* messages can arrive in any order, see Section 3.5.7.

* we allow for half-open systems where an external object may disrupt a session (see
subsection below).

» we perform no checks for deadlocks.

Therefore we had to add requirement (iv) to Theorem 3.5.1.

Note regarding Deadlocks Kamburjan et al. also developed a type system for session
types in [29] which checks for deadlocks being implied by a session type. Integrating
their technique into our tool is an opportunity for future improvement. Alternatively, a
framework for detecting deadlocks in Core ABS has also been realized by Giachino et al.
in [19].

17

Half-Open Systems

As made clear in Section 3.4, our static verification only inspects those parts of an ABS
model directly referenced by a session type. The only exception to this is a check to ensure,
no class implementing an actor is instantiated twice (Section 3.4.4).

This approach implies a half-open system where active objects which are not part of a
session type specification might interfere with a session, see Figure 3.30 and Example 7
in the next section.

K ABS Model \

(session specified by session type \ objects outside of session
: r——

m

o /

———J inspected message as specified in session type

non-specified message, but inspected and permitted, if it does
not affect session progress (no await statements, etc.)

—P non-specified message, but targets method which is not part of
session type. Will thus never be scheduled.

——) non-specified message targeting method specified in type.
Does interfere, but safety guarantees of schedulers apply.

——J non-specified message not targeting a member of the session.
No direct effects on session.

® active object

Figure 3.30.: Half-open system as permitted by our static verification process.

Since there is no globally accessible heap in ABS, the only channel for external interference
is that some object not participating in a session might call an actor of the session. In this
context, we differentiate two kinds of calls:

118

* In a class which implements an actor of a session, there may be methods that are
not inspected during verification because they are not mentioned in the session type.
These may influence a session, if executed, for example by modifying fields. However,
if called, they are never executed since the automata controlling our schedulers
have no InvocREv transitions for these methods. Such calls are colored in purple in
Figure 3.30. See also Section 3.5.2.

* A method whose invocation is permitted in the current state of a used Session
Automaton may be called by an object not belonging to the session. Our schedulers
do not prevent these invocations but we at least give a basic safety guarantee, see
below. Such calls are colored in red in Figure 3.30.

We want to point out that the second kind of call could also be prevented by a scheduler
if the ABS compiler were to be modified further. Making the name of a caller of a method
accessible through Process values would suffice.

Safety Guarantee

Our scheduler AST extensions provide the following safety guarantee:

Let G be a global session type and (p;);c; be actors in G. Let Model be an
ABS model and (C!)ier = (6(G, pi, C;))ier be classes of Model. Then for all
i € I, for all possible executions of Model, at most those actions specified in
project”’(G) can be executed in an instance of C; and only in the specified
order.

The following example clarifies the benefits of this guarantee:

Example 7: Safety Guarantees of Schedulers

Let there be an ABS model of an operating system. The model encompasses a file File
which can be opened, data be written multiple times and finally the file must be closed.
A user Alice who performs these actions is also included in the model. A session type

119

which specifies the above protocol may look like this:

0% Alice: login.

f
Alice ﬂ File: open.File | fopen-

fwri *
<Alice Write, File:write.File | fwrite> .

f
Alice % File: close.File | fo15ge:

Alice | fy

Now, imagine the model is a half-open system and there is also a user Eve who interacts
with File using the open, write and close methods. If File has been extended
with a scheduler derived from the above type, then Eve’s calls can be executed, however,
it is guaranteed that File is never written, if it is not open. Also, if File had a method
delete to remove the file which is called by Eve, it could never be executed, since it
is not part of the session type.

3.7. Postconditions

Our session type specification language does permit us to describe communication between
active objects and aspects of cooperative scheduling. However, it does not allow us to
reason about the effects of method calls on an object’s state. In [29], Kamburjan et al.
introduced a variation of session types for active objects which allow to specify pre- and
postconditions on an object’s state for method calls. They also developed a type system
for the static verification of these conditions.

Due to the time constraints this thesis is subject to, we do not implement static verification
of such conditions. Nevertheless, since our dynamic enforcement methods already modify
the AST of ABS models, we extend our session type language with postconditions for calls
and verify them at runtime.

Within our Evaluation chapter, we give an example application of session types with
postconditions, see Section 5.2.

120

3.7.1. Modified Session Type Syntax

We modify the syntax of global session types so that all interactions can optionally carry a
postcondition in double square brackets “[-]”. The remaining syntax stays the same:

0L p:mlell | [G)[g]
= pLgmel] | ...

This postcondition must be an ABS pure expression e,, see [27] and [11], though we do
not allow all pure expressions supported by Full ABS. See Appendix G.1 for a full list of
supported expressions. For object local types, the receiving type has also been extended
with an optional postcondition:

a= (L]
= 07pm[ep]] | p?m [lep]] -

Since we only need object local types for applying the postconditions to an ABS model,
we do not extend the syntax of method local types.

3.7.2. Changes to CST Validation, Projection and Automaton Generation

The annotation of global types with pre- and poststates during CST Validation must now
preserve postconditions for all types and otherwise ignore them. Object local projection is
slightly adapted to preserve postconditions when projecting an interaction or initialization
to a receiving type:

project? (p ERN q: m [ep] (Tpre, O'post>) = p?ym [ep] {Opre, Tpost) -

Method local projection removes all annotated postconditions.

The generation of automata is altered so that InvocREv transitions are annotated with the
postcondition of the receiving type they have been generated from, if present:

genAutomaton(p?ym [ep] , . ..) = (({qo0, g2}, 90, {(q0, (InvocREv(m),) [epl, 1)}, {a1}), - - -

121

Postcondition annotations are preserved by all other transformations of genAutomaton
and eNFATODFA. The latter one treats postconditions as part of the transition label when
grouping transitions.

3.7.3. AST Extensions

Now that postconditions are carried by the InvocREv transitions of our Session Automata,
we can just extend the method modification steps of Section 3.5.6 to check them at runtime:

Let A = (@, qo, A, F) be the automaton being integrated into a class. Let m be the method
currently being modified. Then

T = {(q1, (IvocREv(m),)[e,]. ¢2) € A}

is the set of InvocREv transitions of m with a postcondition. We now add three steps after
step 3 to the modifications listed in the subsection InvocREv Transitions of Section 3.5.6:

4. a new local variable invocState is initialized at the beginning of m before the
case-statement we inserted. It remembers the automaton state the method has
been activated in:

Int invocState = this.q;

5. If the method contains a return statement return e; at its end, we initialize a
new variable result with e in front of the return statement. Then we replace the
expression of the return statement with a use of the new variable:

;éfurn . Int result = e¢;
! = return result;

; }

The reason for this modification is that our postcondition checks shall be the last
actions performed in a method. Therefore, we need to move e out of the return-
statement since its evaluation may have side-effects.

6. We insert the following case-statement at the end of m, or right before its return-
statement, if there is one:

122

case invocState {
(tolnt(q') => (conditions q') ;) (g v.q")eT
_ => skip;

Thanks to the invocState variable, the case-statement can determine through
which InvocREv transition the current execution of m has been originally activated
and thus derive which postcondition applies. The branches (conditions ¢') each
contain an assertion checking the postcondition of this transition. It should be noted,
that there can be more than one InvocREv transition for m in ¢’ if automaton A is
not data-deterministic. In this case, a warning is already printed by step 3 and we
simply check the postconditions of all possible InvocREv transitions:

(conditions ¢') = {
(assert e, ;) (g, (tvocREv(m),r)[ep].a")ET

}

As an illustration, we give the result of applying these modifications to method start of
the example model of Section 5.2 in Listing 11 of Appendix F.

123

4. Implementation

In this chapter we give a rough overview of the structure of our application and software
tools we utilized. The Concept chapter 3 already explains in great detail how the individ-
ual modules of our application (CST Validation, Projection, Static Verification, Dynamic
Enforcement) operate. Moreover, we were able to directly transfer our formalizations
of the Concept chapter, e. g. the executec, project, genAutomaton functions etc., into an
implementation without the need of an imperative translation or object-oriented layer.
This is because we largely make use of the functional programming paradigm in our im-
plementation. Therefore, we do not discuss the specifics of the implemented functions
here.

In Section 4.1, we first credit some tools and libraries we used for the implementation.
Next, the workflow of our implementation is presented in Section 4.2. Section 4.3
introduces our parser for session types and their representation within our application.
Section 4.4 gives some insight into how session type validation has been implemented
using our Configurable Session Type Validation method. In Section 4.5 we describe the
realization of the type system used for static verification. How AST modifications are
performed to achieve dynamic enforcement of scheduling policies and runtime checks of
postconditions is already explained thoroughly in Sections 3.5.6 and 3.7.3 so we do not
discuss this here.

4.1. Tools and Libraries

The SDS-tool has been written in the programming language Kotlin [26] since we required
alanguage which is interoperable with the Java based abstools compiler but also encourages
a functional programming style. This way, we could implement the components of our
tool so that they closely resemble our formalization.

124

Our tool is not an extension of the abstools compiler but we use it as a library instead.
Thus, our tool can be maintained separately from the ABS compiler. However, as explained
in Section 3.5.5, we still had to modify it slightly®.

We parse session types using the parser generator ANTLR [40], see also Section 4.3.
Command line arguments are handled using the picocli library [41]. All other used utility
libraries are credited in Appendix G.2.

4.2. Workflow

Figure 3.3 of Section 3.1 depicts all important components of our tool as well as their
interactions on a high level. In this section, we briefly elaborate on this workflow on a
slightly more technical level. When a user calls our tool on the command line, they need
to provide an ABS model and a set of global session types as source files. It then outputs a
compiled Erlang version of the model with schedulers and postcondition checks. More
specifically, our main class executes the steps listed in Algorithm 1, see below.

We leave the parsing and data type checking of ABS models to the abstools compiler, see
Lines 3 and 4. Lines 5 to 8 realize the preprocessing of session types and their static
verification for an ABS model. Line 9 realizes our dynamic enforcement techniques. Since
we modify the AST, we again check it using abstools in Line 10. This is partly to confirm
that there are no type errors in our modifications but also necessary because abstools must
rewrite some parts of an AST during typechecking to be able to compile it. If any step
fails (data type checking, static verification, ...), then the tool aborts execution.

You can find the modified branch of abstools at [43].

125

Algorithm 1 Main compiLE method of the SDS-tool (Compile.kt).
1: procedure comPILE(cli arguments (*.abs and *. st files))
2 parse command line arguments with Pico CLL
3 parse * . abs files using abstools.
4 typecheck and rewrite resulting AST using abstools?.
5: BUILDTYPES(*.st) > preprocessing of session types
6
7
8
9

for each global session type do > static verification
apply type system rule MoDEL to model AST
apply additional checks of Section 3.4.4
: apply modifications of Section 3.5.2 and Section 3.7.3 to AST.
10: typecheck and rewrite modified AST using abstools
11: compile modified AST to Erlang with abstools
12:
13: procedure BUILDTYPES(*. st files)
14: parse *. st files using ANTLR

15: apply executec, the Configurable Session Type Validation
16: check no actor participates in more than one global type
17: perform object projection using project

18:

19: return analyzed global and local types

126

4.3. Session Type Parser

Users should be able to provide session type specifications to our tool which do not require
special symbols like the ones we introduced in Section 2.3. Thus, we developed an ASCII
based version of the grammar of Sections 2.3.1 and 3.7 which we parse using the ANTLR
tool [40]. The following table gives a short overview on how each kind of global session
type is represented in this new syntax:

Type Representation

0 L P: m[pure-exp] 0 -f-> P:m<pure-exp>
P i> Q: m[pure-exp] P -f-> Q:m<pure-exp>
Pl f(C) P resolves f with C
Pt f(C) P fetches f as C
Rel(P, f) Rel(P, f)

Skip skip

P{..} P{...}

(..)" (...)*

G1.G> G1.G2

The allowed characters for actors P and Q follow the grammar for class identifiers of ABS.
The same applies to futures f, methods m and data constructors C. For full examples of
this user input syntax, see Chapter 5.

Internally, we represent session types after the parsing process as a recursive algebraic
data type (ADT). More precisely, we use the Kotlin representation of this concept, which
is a sealed data class with a subclass for each kind of session type. For example, this is the
class hierarchy implementing global session types:

127

GlobalType 1
T *

Initialization Interaction Branching Repetition Concatenation
+f: Future +caller: Actor +choosingActor: Actor +repeated: GlobalType +lhs: GlobalType
+callee: Actor +f: Future +branches: List<GlobalType> +rhs: GlobalType
+m: Method +callee: Actor
+postCondition: PureExp? +m: Method N

P P +postCondition: PureExp? "choosingActor { ... }" & "Ihs.rhs"
"0 -f-> callee:m" H l"caller -f-> callee:m" H

Figure 4.1.: Class hierarchy implementing global types.

4.4. Configurable Session Type Validation

The concept of a configurable session type analysis structure of Section 3.2 has been imple-
mented as an interface containing all methods a configurable analysis must support, see
Figure 4.2. Consequently, each of our analyses has been realized as a class implementing
this interface. A analysis’s state is an instance of the class and the initial state oy defined
by its default constructor. The Combined Analysis is a class composed of the other ones
and delegates all calls to them. The validation process therefore is modular and can be
extended by adding another class to the Combined Analysis.

In our concept, the functions and predicates of an analysis are undefined if a session type
is invalid. In our implementation, an analysis’s methods instead throw an exception in
this case. Our tool then displays a description of the issue to the user and aborts. The
executep function is implemented just like the formalization. It returns another session
type ADT containing instances of CombinedAnalysis as pre- and poststates.

128

«interface»
ConfigurableAnalysis<AnalysisT>

+transfer(t: GlobalType): AnalysisT
+merge(rhs: AnalysisT): AnalysisT
+selfContained(preState: AnalysisT)
+closeScopes(preState: AnalysisT): AnalysisT

|
CombinedAnalysis
pd: ParticipantsAnalysis

r a
I I I I
| | | |
I I I I
| | | |
I i ffd: FutureFreshnessAnalysis i |
} } aad: ActorActivityAnalysis } }
! ! rd: R > | !
| | - | |
I I I I
I I I I
I I I I
I I I I
I I I I
ParticipantsAnalysis [FutureFreshnessAnalysis | [ActorActivityAnalysis ResolutionAnalysis |

+participants: Set<Actor> ‘ ‘
Ftransfer(t: GlobalType): ParticipantsAnalysis

+merge(rhs: Pa...): ParticipantsAnalysis
+selfContained(preState: ParticipantsAnalysis)
+closeScopes(preState: Pa...): ParticipantsAnalysis

Figure 4.2.: Implementation of configurable session type analyses.

4.5. Static Verification

We implemented the structural rules MobpEL, CLASSES, CLASS, METHOD and MAIN of our
type system (see Section 3.4.3) as a set of functions which apply all checks described by
them.

However, this approach is not applicable for the statement rules. Whereas for structural
units it is immediately clear by the type of the AST node (Model, Class, Method, Main
Block) which rule must be fulfilled, this is not the case for statements. Instead, oftentimes
all conditions (except for recursive rule application) of a set of rule candidates must be
evaluated to decide which rule must apply.

Therefore, we split up the representation of a statement rule into a guard method and
an invoke method. The first one checks its conditions without rule recursion and the
second one applies the recursion. Statement rules have thus been realized as singletons
implementing this common interface:

129

«interface»
StmtsRule

+guard(stmts: List<Stmt>, type: MethodLocalType): Boolean
+invoke(stmts: List<Stmt>, type: MethodLocalType)

«singleton» «singleton» «singleton»
CallRule FieldAssignRule VarAssignRule
Figure 4.3.: Type system rule interface and rule singletons.

Furthermore, a function checkStmts has been implemented to conduct verification of
statements using these rule singletons. It tests the guard method of all rule singletons
for the statements to be verified and their session type. Then the invoke method of the
singleton whose guard returns true is applied®. A model does not fulfill its session type if
no rule is applicable. This will abort execution of the SDS-tool with an error. The invoke
method in turn calls checkStmts again if the rule is not axiomatic. Otherwise recursion
stops:
n statements

& type
——> checkStmts ()

n-1 statements
& shortened type
if axiomatic if no rule

ifi i rule X applicable ifi i
verification invoke() check guard()s verlﬁgatlon
branch succeeds fails

selected rule

Figure 4.4.: Workflow of method body verification.

3We adapted the rules for the implementation slightly so that at most one of them can apply to a statement.

130

5. Evaluation

In the first part of this chapter we apply our tool to examples of distributed systems
from [30] and [29]. We demonstrate that our tool solves the problems posed by the
examples. We also point out some restrictions of the tool which become apparent when
implementing these examples. Furthermore, an implementation of Example 1 of Sec-
tion 2.3 is given to showcase the branching and repetition features of session types not
covered in the other two examples.

In the second part of this chapter, we evaluate how our dynamic verification techniques,
namely schedulers, affect the execution performance of ABS models.

For information on how these experiments have been conducted and instructions to
reproduce the results of this chapter, see Appendix B.

5.1. Example 1: Ordered Activations

In [30], the need for schedulers as a means to enforce an execution order is illustrated
with an example similar to the following one:

A grading system consists of a computation server C, a report generator R, a service desk
D and a student S. The computation server’s task is to compute the student’s grade,
send it to the report generator and notify the student about the new grade. The report
generator renders a human-readable report from the server’s data which can take some
time if the generator is busy. The generator then publishes the report at the service desk.
After receiving the notification from the computation server, the student will request their
grade from the service desk. However, the desk may handle this request only after it has
processed the publication of the report. Therefore, if the student’s request arrives before
the report, the service desk’s scheduler must not activate the request until it has processed

131

the message from the report generator. The system and its messages have been illustrated
in Figure 5.1.

1. toReport 3. publish

4. request

Figure 5.1.: Visualization of the grading system and the messages between its active

objects. Message 3 must be processed by D before message 4. The illustration
has been adapted from Figure 1 of [30].

The protocol described above is captured by the following session type. Its representation
in the input format accepted by our tool is displayed on the right:

f
0= C': compute. 0 —f—> ComputationServer :compute.
C —

f toReport

ComputationServer
R: toReport.
P —fToReport—> ReportGenerator:toReport.
¢ ey, Frority S: notify. ComputgtionServer ‘
—fNotify— Student: notify.
R Lpublish, Tputish D: publish. ReportGenerator
—fPublish—> ServiceDesk: publish.
R froreport- ReportGenerator resolves fToReport.
D | foubtish- ServiceDesk resolves fPublish.
Frequest Student —fRequest—> ServiceDesk:request.
S —— D: request. ServiceDesk resolves fRequest.
D | frequest- Student fetches fRequgst.
Student resolves fNotify.
ST frequest ComputationServer resolves f
S fnotify-
clf

Next, we present an ABS model of the grading system (we leave out the interfaces for
brevity):

132

class ComputationServer class ServiceDesk
(ReportGeneratorl r, Studentl s) implements ServiceDeskl {
implements ComputationServerl { Maybe<String> report = Nothing;
@ fui<Unit> fToReport;
Fut<Unit> fNotify; Unit publish(String report) {
@ println(”publish”);
Unit compute() { this.report = Just(report);
Int grade = random(6) + 1; }
@ this.fToReport = String request() {
r!toReport(grade); println ("request”);
e this.fNotify = s!notify (); return fromJust(this.report);
¥ }
} }
class Student (ServiceDeskI d) {
implements Studentl { QServiceDeskI d =
Fut<String> fRequest; new ServiceDesk ();
ReportGeneratorl r =
Unit notify () { new ReportGenerator(d);
o this.fRequest = d!request(); Studentl s = new Student(d);
@ ©Siring gradeReport = ComputationServerl c =
this.fRequest. get; new ComputationServer(r, s);
¥
} await c!compute ();
}
class ReportGenerator
(ServiceDeskI d)
implements ReportGeneratorl {
Fut<Unit> fPublish;
Unit toReport(Int grade) A{
@ duration(1l, 1);
this.fPublish = d!publish (
"Newnograde :0”+toString (grade)
);
}
}

Actors are implemented as classes of the same name (see Section 3.4.2). Calls and get-
expressions realize the interacting (p EN q: m) and fetching (p 1 f) components of the

133

type.

This model can be checked against the session type by our SDS-tool and be compiled to
Erlang. As intended, our tool reports an error during static verification if the model does
not fulfill the session type. For example, if statements @ and €) or @ and @ were to be
swapped or removed, the user is informed and the compilation aborts. The duration-
statement in @@ of Real-Time ABS [5] allows us to simulate a slight delay during generation
of a report. Actions like @) which have no effect on the session are permitted at any point.

This example also demonstrates that our tool imposes some restrictions on modeling.
For instance, futures of the session have to be stored in fields as in €. Moreover, @
shows that all actors have to be instantiated in the main block and references be shared
as initialization parameters. This is a more severe restriction since it implies that at the
beginning of a session not all actors can have a reference to all other actors, e.g. the
service desk initially can not have a reference to the student. Nevertheless, if required,
actors can still share a reference to themselves as parameters of calls. However, those calls
have to be added to the session type and the model.

The schedulers our tool adds to the model during compilation solve the invocation ordering
issue of the grading system described by [30]. Out of 100 executions, request is never
activated before publish!. On the other hand, if we deactivate the dynamic enforcement
of our tool, in 100 out of 100 executions the ordering is violated.

5.2. Example 2: Heap Communication

We use an example from [29] to demonstrate the runtime postcondition checking feature
of our tool. Imagine a user interface U which executes costly computations on a backend
server B to stay responsive. After the method start is called on U, U asks B to perform
the costly computation cmp. Before completing the method it then sets a flag in its heap
which marks that it expects a callback from B with the result. Therefore, this is an example
of communication between methods of an object via the object’s heap. When B finishes
the computation, which must always have a positive result, it calls resume on U with
the value of the result as parameter. It must be ensured that at all times when resume is
invoked the aforementioned flag is set. Figure 5.2 gives an overview of this protocol.

!We inspect the output of the model and check whether “request” is ever printed before “publish”.

134

IUserInter‘faceI IBackendl 0 M U : start [[this_intern == Expect]] .
start()[this.intern = Expect] fcmp
U — B: cmp |result > 0].
cmp(v)lresult > 0] pl]
HI U \L fstart-

| : B Fesmes 17 resume.

resume(result) |
t L_“ B femp-

U i, fresume

Figure 5.2.: Sequence diagram of the interactions between user interface and backend on
the left. This illustration has been adapted from [29]. On the right, a session
type formalization of the scenario is depicted.

We give the input format of the session type for our tool below:

0 —fStart—> Ul:start<this.intern == Expect>.
Ul —fCmp—> Backend:cmp<result > 0>.
Ul resolves fStart.
Backend —fResume—> Ul:resume.
Backend resolves fCmp.
Ul resolves fResume

We can see that postconditions can be used to reason about the state of fields (this.intern)
as well as local variables (result). Next, we present the ABS model implementing the
scenario:

135

data TState = Init | Expect; class Backend
implements BackendI {
class UI (BackendI b) Fut<Int> fResume;
implements UII {
@ TState intern = Init; Unit emp(UII u, Int v) {
Fut<Unit> fCmp; €© [0t result = 42xv;
this .fResume
Int resume(Int result) { = ul!resume(result);
// ... b
return if (intern != Expect) }
then -1 else 1;
b {
BackendI b = new Backend ();
Unit start(Int v) { UIl u = new Ul(b);
this .fCmp = b!cmp(this, v);
@ intern = Expect; QO await u!start (42);
b b
b

The field this.intern at @ models the flag which is set in @) to signify that a callback
from B is to be expected. Our tool ensures that the execution of u and b respectively
aborts immediately when reaching the end of start or cmp if the postconditions encoded
in the type were to be violated. That is the case if for example statement @ were to be
removed or the value 42 in @) were to be replaced with a negative value.

Again, we can also observe some limiting aspects of our tool. For example, postconditions
can not be used to check the value of the local variable result before passing it to
resume. Also, since we support no preconditions, such a check can not be placed at the
beginning of resume. Therefore, resume can execute with an invalid value and only the
b object will be affected by the failing postcondition.

Furthermore, the usual limitations of runtime verification apply, that is, a static verification
of postconditions could detect that cmp’s postcondition can not be proven to hold for all
inputs. Whereas our dynamic checks would only report this issue if the model is executed
with negative inputs.

Lastly, we want to point out another modeling restriction. In the original example of [29]
there is an interface server I placed between the UI and the backend. Instead of passing
on the result computed by the backend to U, I hands over the future for that computation.
Since our tool only allows interactions with futures stored in special fields, see Section 3.4.3,
using futures which have been communicated between objects is not supported.

136

5.3. Example 3: Notification Service

We now give an implementation of Example 1 of Section 2.3.1 to demonstrate repeating
and branching types. For information on the implemented scenario and a session type
formalization, please see Section 2.3.1.

The session type is encoded into the input syntax of our tool like this:

0 —fInit—> NotificationService:init.

(
NotificationService —fCheckMail—> MailServer:checkMail.
Rel(NotificationService , fCheckMail).
MailServer {

MailServer resolves fCheckMail with NewMail.
NotificationService fetches fCheckMail as NewMail.
NotificationService —fPopup—> UI:popup.

UI resolves fPopup,

MailServer resolves fCheckMail with NoMail.

NotificationService fetches fCheckMail as NoMail
¥
)7':.

NotificationService resolves fInit

We implemented the scenario as the following ABS model:

137

data MailMsg =
NewMail (String mail) | NoMail;
class NotificationService
(MailServerI m, UII u)
implements NotificationServicel
{
Fut<MailMsg> fCheckMail;
Fut<Unit> fPopup;

Unit init () {
Int i = 0;
@ while (i < 10) {
this.fCheckMail =
m! checkMail ();
await this.fCheckMail?;

MailMsg response =

this.fCheckMail. get;
(2] case response {
NewMail (mail) =
this . fPopup =
u!popup (mail);

NoMail => skip;

b

i=1i+ 1;

class MailServer
implements MailServerl {
MailMsg checkMail () {
MailMsg result = NoMail;
€© if (random(2) == 1) {
result =
NewMail (”HellooWorld!”);
¥
return result;
b
}

class UI implements UII {
Unit popup(String mail) {
println (”Youogotomail:o” +
mail) ;

MailServerl m =

new MailServer ();
UIlI u = new UI();
NotificationServicel n =

new NotificationService (m, u);

await n!init ();

The repetition (. ..)* within the type has been implemented as the while-loop at @.
For this example, we choose to restrict the execution to 10 iterations so that the model
terminates. An infinite loop would also have been accepted by our static verification.

In the branching type MailServer {...}, actor MailServer does decide on which
branch the session progresses and NotificationService must follow this decision.
This is achieved by reading the result of the call to MailServer and forking the control
flow by applying the case-statement at @ to the value. Please note, that our type system
only accepts case-statements for this purpose, therefore, if-statements could not have

been used here, see also Section 3.4.3.

138

On the other hand, for the deciding actor, we allow much more modeling freedom. As
long as all possible control flows of a deciding method are typed by one branch of the
session type, it is accepted. In this model, we randomly decide whether there should be
mail or not, see €. It should be noted that our static verification would accept the model
if a value created with a third constructor, not NewMail or NoMail were to be returned
but it would cause an exception at @ at runtime. See also our remarks regarding the type
system rules OFFER and RETURNMSsG in Section 3.4.3.

5.4. Performance Evaluation

To assess the performance impact of our schedulers, we designed a minimal example of
communicating active objects and extend it in different ways to observe the impact on
our performance metrics. We also give a brief overview on how the performance of the
slightly more complex model of Section 5.3 is affected by schedulers.

We start out with an ABS model containing two actors, P and Q. P is repeatedly calling
two methods on Q which have to be activated in the right order:

oL p.m. (me—1>Q: m1.Q | fom1.P 272 Q- m2.Q¢fm2>*.P¢f

We list the source code for this type which is read by our tool in Listing 12. This is the
ABS model implementing the type:

139

module Model;

interface PI {
Unit m();
b

interface QI {
Unit ml(Int i);
Unit m2(Int i);
b

class P (QI gRef) implements PI {
Fut<Unit> fml;
Fut<Unit> fm2;

Unit mQ) {
Int i = 0;
while (i < (times)) {
this .fml qRef!ml(i);
this .fm2 qRef!m2(i);

class Q implements QI {
Unit ml(Int i) {
println ("ml1(” +
toString (i) + ”)”);
b

Unit m2(Int i) {
println ("m2(” +
toString (i) + 7)”);

b

}

{
QI q = new Q();
PI p = new P(q);
await p!m();

}

We call the model the “plain model” when being compiled without adding schedulers and
otherwise the “enforcement model”. The following performance metrics are measured
by us for the execution of the plain and enforcement models for a varying number of

repetitions:

Execution Time This is the required time in user mode for the full execution of the model.

Max. Memory RSS the maximum memory resident set size (RSS) of the Erlang process
executing the model. The resident set size is the amount of main memory occupied
by a process. Therefore, it does not include used swap space etc.

Order Violations To set the performance penalties of schedulers into perspective, we also
need a metric of how severely the plain model violates the order of invocations

without a scheduler.

140

In this simple model, invocations of m1 and m2 should be in the following order
when being executed sequentially, that is

m1(0)m2(8)m1(1)m2(1)...m1((times) — 1)m2((times) —1).

However, the session type does not require this exact order but only that invocations
of m1 and m2 alternate, since it does not specify parameter values.We recorded the
model’s output and compared it against the expected alternating and sequential
orders using the Levenshtein edit distance [35]. This gives us an approximate
measure of how severely the intended order is violated.

Scheduling Delays We record how often the scheduler of Q hinders the progress of the
model’s execution. That is, we measure how often the scheduler could not select an
activation compared to the overall number of times the scheduler has been called?.

For all measured values, we computed the average over 10 executions of the model
to mitigate the influence of background processes and the operating system on our
experiments.

5.4.1. Phase I: Varying Repetitions

During the first line of experiments, we exclusively adjust the while-condition (times) to
increase the number of repeated calls of mTand m2

Execution Time Figure 5.3 shows that the execution time is stable at around 0.22 seconds
for both the plain and the enforced model until around 100 repetitions. Our dynamic
enforcement techniques also seem to only slightly increase execution time in this range,
there are even cases, where the execution time decreased. Starting from the datapoint
of 300 repetitions, execution time clearly increases and it grows more rapidly for the
enforcement model. At the datapoint of 500 repetitions, the enforcement model already
takes more than twice as much time to execute.

2We modified the generation of scheduling functions so that they report status messages which we collected
during the model’s execution.

141

2.00 s plain 250 -{ EEE relative increase
: mmm enforcement

1.754
200
1.504

150

100 -

relative increase [%]

user mode execution time [s]
o e Iy =
w ~ o N
o w o w
L | L |

50

0.25 4

OV-_—_---f--.

0.00 -

- N m ¥ 1n O 9 9O o 9
B T A -]

100
300
500
700
900

repetitions repetitions

Figure 5.3.: User-mode execution time. Left plot displays absolute values, right one

relative increase in time when using dynamic enforcement. Source data see
Table C.1.

Max. Memory RSS Regarding memory consumption, similar observations as with the
execution time can be made, see Figure 5.4. However, it seems at least for this simple
model, schedulers do not affect memory consumption as drastically as execution time,
since we observe “only” an increase of about 22% at 900 repetitions.

. plain Bl relative increase
- enforcement 204
40000 4

30000 4
£ 104
20000 1 ;
10000 + I I
ol mEN w0 _N_

-
o]

relative increase [%]

maximum memory resident set size [KB]
w

S~ N M ¥ 1n O O 9O o 9
s M o K ©

100

repetitions repetitions s
Figure 5.4.: Maximum memory set size. Left plot displays absolute values, right one

relative increase in time when using dynamic enforcement. Source data see
Table C.2.

142

Order Violations We observe that up to 5 repetitions almost no deviations from the
expected invocation sequence occur and starting from 30 iterations they become increas-
ingly common. For the enforcement model, no deviations from the expected order are
observed (see Table C.3). This supports Theorem 3.5.1. There have also no deviations
been measured when comparing the invocations of the enforcement model against the
strictly sequential order. We presume the Erlang backend only slightly shuffles the delivery
of consecutive calls and enforcement of the alternating order of methods is sufficient to
restore the sequential order.

e
W
S

Emm sequential
mmm alternating
mmm sequence length

300 4 mmm edits / sequence length

o

N

o
L

250 A

o

N

S)
.

200 A

edits

edits / sequence length
o
=
G
L

100 -

50

04 L__|
< w0 o
-

o
o)

50
70
80

- ~ ™ < o) o o o
- o) I

o o
~ @

repetitions repetitions
Figure 5.5.: Levenshtein distance of observed and expected invocation sequence. The
absolute number of edits when comparing against the sequential or alternating
invocation order is displayed left for the plain model. The relative number
of edits per sequence length is plotted on the right side. Source data see
Table C.3.

Scheduling Delays For this model, the scheduler of Q can always select an activation,
see Figure 5.6 and Table C.4.

143

B delays
calls of scheduler

1750

1500 A

1250

1000 A

750 A

500 -

250 A

0 — T

T T T T T T T
— o~ m < n o o o o o
— m n ~ 0

100 4
300 A
500 -
700 A
900 -

repetitions

Figure 5.6.: Calls of the scheduler of Q. A “delay” is counted for every time the scheduler
is called and it can not select an activation. Table C.4.

The following questions remain from the above observations:

* Await statements allow to enforce an invocation order without using schedulers but
are more restrictive since they synchronize callers with callees, stalling progress in
both objects. Schedulers on the other hand would only potentially introduce delays
in the callee and do not require the calling computation to be suspended.

Therefore, the question arises, how the execution time compares between the plain
model and the enforcement model when the order of invocations is guaranteed by
await-statements.

We explore this question in Section 5.4.2.

* We measured no scheduling delays, likely because the calls immediately arrive at the
target object. In a more complex model, there might be some delay between calls
because the caller is performing other tasks and computations between them. This
in turn should cause delays in a callee object whose scheduler has to wait for the
next correctly ordered activation to be available. Meanwhile, the plain model can
progress by activating just any method. This hypothesis is tested in Section 5.4.3.

144

5.4.2. Phase II: Await Statements

For this experiment, we insert await-statements after every call to Q:

this.fm1 = gRef!m1(i);
await this.fm1?;
this.fm2 = gRef!m2(i);
await this.fm2?;

Listing 10: Part of the model where we insert additional await-statements.

The session type is also adapted accordingly by adding Rel(P, . ..) types.

As we can see in Figure 5.7, there is now little difference in execution time between
the plain model and the enforcement model. The overhead amounts to at most 13%
in our experiments and it does not grow as rapidly for a higher number of repetitions.
Also the measured execution times for the enforcement model are often lower than the
ones measured in Phase I, see Figure 5.3. Thus, we presume, that the application of our
schedulers does not produce much execution time overhead when using await-statements
to enforce an ordering, at least in a simple example like this one. However, it does seem
synchronizing executions using await-statements requires less execution time than solely
relying on schedulers.

145

1.0 mmm plain
mmm enforcement

Bl relative increase

5.0
N I
0.0 == = I I I - I | |

S~ N M ¥ N O 9 9 © 9 9 9 9 9o 9
A M ;nm K ® © © © © o
T A Y

o
©
s

ol
o
)

=3
IS
L
o)

user mode execution time [s]
relative increase [%]

o
N)

0.0+

repetitions repetitions

Figure 5.7.: User-mode execution time when using await statements. Left plot displays
absolute values, right one relative increase in time when using Dynamic
Enforcement. Source data see Table C.5.

5.4.3. Phase lll: Delayed and Unordered Calls

To simulate calls arriving out of order and with delays at P, we insert duration-
statements (see [5]) after every call and reverse the order of calls in the ABS model.
This requires us to disable static verification for this experiment:

this.fm2 = gRef!m2(1i);
duration(1, 1);
this.fm1 = gRef!m1(1i);
duration(1, 1);

As expected, we now observe calls to the scheduler of Q which result in no activation. Their
number does not grow as fast as the overall number of calls with increasing repetitions.
Furthermore, compared to the plain model, there can no execution time overhead be
consistently measured, presumably because the scheduling overhead falls within the now
increased idle time of Q.

146

B delays m plain
2500 ™ calls of scheduler | mmm enforcement

ad
0

2000 -

hd
o
!

1500

=
5]
s

1000

I
o
!

user mode execution time [s]

500 -

d
«
L

repetitions repetitions

Figure 5.8.: The left plot shows the number of times (“delays”) no activation could be
selected by the scheduler of Q compared to the total number of calls. The right
plot depicts measured user-mode execution times. Source data see Table C.6.

5.4.4. Performance of More Complex Models

We also measured the execution time and memory metrics for the slightly more complex
model of Section 5.3 for an increasing number of repetitions of the while-loop, see
Figure 5.9.

Overall it shows similar developments in performance metrics as the experiment of Sec-
tion 5.4.2. This is likely due to the fact, that it also orders invocations with an await-
statement and has similar communication patterns.

147

0.7

= plain Bl relative increase
mmm enforcement
0.6 0.06
0.59
0.04 4
0.44
03 2 0027
| I
0.00 [

—0.024

user mode execution time [s]
relative increase [%]

300
500
700
900

repetitions repetitions

- 0.020 o —
. plain B relative increase

35000 1 mmm enforcement 0.015

30000

0.010
||I||| |
20000 4 £ 0.0001 I
15000 4 ‘8 —0.005 A I
10000 —0.010

maximum memory resident set size [KB]
relative increase [%]

[
o
S
b=
L

—0.015 A

o
I

-0.020

A N m < 09 2 9o o0 g 9
h o~ ® g

300
500
700
900

repetitions repetitions

Figure 5.9.: In the upper row: User-mode execution time. In the lower row: Maximum
memory set size. The left plots display absolute values, the right ones the
relative increase in time/memory when using dynamic enforcement. Source
data see Table C.7.

5.4.5. Summary

The following statements only hold in the context of our simple model introduced at the
top of Section 5.4, assuming messages arrive without delays.

Our schedulers increase the execution time of models if a high number of calls is issued. The
overhead, that is the difference in execution time between the plain and the enforcement
model, is stable until a certain number of calls (about 100 - 2 = 200 calls). Then the

148

overhead grows to increasing multiples of the execution time of the plain model. However,
similar increases in execution time are measured if await-statements are used to enforce
order instead of schedulers. When using await-statements, the overhead produced by
schedulers is not as noticeable. Also, in absolute values, using await-statements for
ordering seems more efficient than solely relying on schedulers in regards of execution
time.

The maximum memory RSS first stays constant like the execution time and then starts to
increase with a high number of calls, though not as rapidly.

The ordering of messages is reliably ensured by our schedulers.

Threats to Validity

The reader should be aware that the conclusions drawn in the above sections are derived
from relatively simple models, though they give us an idea of how more complex systems
may behave. For example, we only introduced await-statements to a single object. It is
unclear, which effect a high number of future reactivation transitions in schedulers has
when being distributed among multiple actors. The implementation of a case study on
larger models with more complex communication patterns remains as future work.

149

6. Conclusion

In this thesis, we applied existing theoretical work by Kamburjan et al. [30, 28, 29] to
implement a software tool which allows to statically verify that the components of an
ABS model comply with a session type specification. Furthermore, it extends the model’s
abstract syntax tree to dynamically enforce specified behavior in the composite model
where it can not be statically guaranteed.

To perform the static verification, we project the session type on each participating object
and method to derive a specification of their local behavior. This local specification is
verified using a type system. We developed our own variation of the projection process
and type system based on the existing theoretical work. This way, they are suited for a
straightforward implementation and can be applied to the current ABS language version
as realized by the abstools compiler.

We also introduced a new method of validating session type specifications separately from
the projection process which is based on Configurable Software Verification [4]. This
separation of concerns improves the maintainability of our project and allows our session
type language to be easily extended.

Since the order of activations of methods can in many cases not be statically guaranteed, we
automatically extend ABS models to dynamically enforce a specified order using schedulers
based on Session Automata. Moreover, our session type language based on [30] has been
extended with ideas from [29] to include postconditions for method invocations. This
allows the user to reason about an object’s heap and local variables after the execution of
a method. These postconditions are checked at runtime as part of our modifications to
ABS models.

The abstools compiler has been modified to allow the compilation of modified models to
Erlang so that they can be simulated. The impact of schedulers on the performance of
such simulations has been investigated. The results suggest that schedulers can have a

150

considerable impact on the execution time of a model. However, such overhead is also
produced by the existing method of ensuring an execution order via await-statements.

6.1. Related Work

Other Implementations of Session Types We implemented session types as an extension
of the ABS modeling language, a language based on active objects. There are
many other implementations of session types for different programming languages
and a survey of them can be found in [2]. A list of implementations is also being
maintained by Fowler in [17]. Some of these implementations are intended for use
in the academic context and others try to incorporate session types into main-stream
languages like Java or C for practical application.

SePi [18] is a language of the first kind which implements a variation of the -
calculus and aims to be a testing ground for theoretic work on session types. It
statically checks communication via channels against session types. SePi’s session
types differ from ours and resemble more closely their original formulation [46,
21], due to SePi’s vastly different concurrency model and usage of channels for
communication. Messages are data types which can be refined [3] instead of method
invocations. There is no notion of cooperative scheduling, like our Rel(p, f) types.

There are also multiple approaches to integrating session types in an object-oriented
setting. Session Java [24] is an extension for the Java language which adopts
channel-based session types for TCP sockets. For this language, local endpoints are
statically verified against session types. However, the compatibility of these local
types is checked dynamically upon the connection of sockets. Mool [9], a minimal
object-oriented language, employs method calls instead of data type messages as a
communication model. Therefore, its session type language is more similar to ours
than the other languages. However, they also do not encode cooperative scheduling.
In Mool, classes are annotated with a usage type which describes the order and
structure of method invocations. The state of an object and its usage type determine
which methods can be called and calling a method changes the state according to the
type. This concept is similar to our schedulers whose automaton states determine
the methods which can be called on an object. However, Mool verifies conformance
with usage types statically, whereas we require a dynamic solution via schedulers
since message ordering is not guaranteed in ABS.

A “Multiparty Session Actor” framework for applying session types to actor-based

151

concurrency models has been developed by Neykova and Yoshida [38] and imple-
mented by emulating actors in Python. There is also a more direct implementation
of the framework in the actor-based language Erlang [16]. It monitors communica-
tion at runtime using finite-state machines generated from session types. However,
their types do not incorporate cooperative scheduling and the monitors do not delay
and reorder messages like our schedulers.

Though we discovered session type implementations for process calculi (SePi),
functional (Links [36]), imperative (Session C [39]), object-oriented (Mool, Session
Java) and actor-based programming languages (Multiparty Session Actors), we
were not able to find an implementation where the communication and concurrency
models resemble ABS and the session types describe cooperative scheduling.

The languages mentioned above all either have session types built into the language,
are extensions of a language with session types like our tool, or perform all veri-
fication dynamically. Instead, it is also possible to implement support for session
types as a library using only the existing type system of a language and lightweight
dynamic checks. The library Rusty Variation [33] implements session types for the
Rust language. It utilizes the type system of Rust to verify channels against session
types at compile-time and guarantees deadlock freedom. Moreover, it can handle
cancellation of sessions at runtime. There are also library implementations of ses-
sion types for other languages (Haskell, Scala, OCaml) see [17]. Implementing a
library-based implementation of session types is probably only possible for ABS by
emulating channels at runtime and also performing all verification dynamically.

Typestate Typestate [45] which was introduced by Strom and Yemini is an extension of
the type concept. Whereas a type defines the set of all operations applicable to a
value in total, a typestate defines a subset of these operations permitted in a value’s
current context. This is achieved by associating values with an initial typestate
in addition to their type and all operations with typestate transitions. Thus, our
schedulers are a dynamic version of typestate since the subset of applicable methods
of an active object is defined by the state and transitions of a Session Automaton.
Originally, typestate was developed as a compile-time analysis but as Strom and
Yemini point out, it becomes difficult to track typestate statically if values are shared
among concurrent processes. This is the case with references to objects in ABS.

Hybrid Static and Dynamic Session Type Verification Some session type implementa-
tions which combine static and dynamic verification techniques (Session Java, Rusty
Variation) have already been mentioned. They have in common that they use dy-
namic techniques to complement static verification where a compile-time solution is

152

too difficult or impossible. If they detect a violation of a session type at run-time,
execution is aborted. Our implementation behaves similar in this regard in that
we statically verify method local behavior and dynamically enforce method invo-
cation orders because the arrival and activation order of messages can not always
be statically guaranteed. However, we do not abort execution upon detecting a
violation of order but correct it instead by delaying activations. Only the verification
of postconditions can lead to run-time errors.

A different approach on combining static and dynamic verification of session types,
called Gradual Session Types, is presented by Igarashi et al. [25]. They give the
programmer control over which parts of a program are verified statically or dynam-
ically, since their functional language “Gradual GV” permits to combine statically
and dynamically typed program fragments. Source programs are translated into an
internal representation which adds run-time check annotations for the dynamically
typed sections. However, Igarashi et al. provide no implementation of “Gradual GV”.

6.2. Future Work

Throughout this thesis, we pointed out opportunities for improvement of our tool and also
some shortcomings. In this section, we collect such issues.

Lifting Modeling Restrictions Our static verification process imposes some restrictions
on programmers. For example

 futures must be stored in fields of a specific name as specified in a session
type, see explanation of rule CaLL in Section 3.4.3. Also, futures can not
be communicated between objects via method calls, see the discussion in
Section 5.2.

* in a model, there can only be one instance of a class implementing an actor of
a session type (see Section 3.4.2.)

To lift these restrictions and provide more freedom in designing ABS models, our
static verification techniques must be enhanced. For example, they could be ex-
tended with (pointer) analyses to track which future variables are referencing which
invocation.

153

Improving upon Liveness Properties Due to several issues, we can give no strong guar-
antees on the liveness of a session, see Section 3.6. For one, deadlock checks of ABS
models could be integrated to strengthen the liveness guarantees, see note at the
bottom of Section 3.6. Also, work of Kamburjan et al. in [29] who check whether
a session type specification induces deadlocks could be incorporated. They derive
causality graphs from session types and inspect them for cycles.

The translation of session automata into data-deterministic automata needs to
be completed (Section 3.5.3) and the limitations on schedulers described in Sec-
tion 3.5.7 be resolved, if possible. Alternatively, algorithms could be implemented
which can identify session types that induce these issues. Moreover, method bodies
could be checked for possible exceptions which can prematurely cancel sessions.

Expanding Condition Checking As the example in Section 5.2 made clear, there are some
situations in which preconditions should be checked. Preconditions can be added to
our session types and verified at run-time in a similar fashion as postconditions with
little effort.

Runtime verification can only detect the violation of a condition if a model is tested
with the right set of input values while static verification can detect them early and
for the general case. We could therefore improve the verification of postconditions
by attempting it at compile time. Then, run-time checks are performed only for
those postconditions which can not be statically proven to hold. There exists a
deductive verification tool for ABS, KeY-ABS [14] which could be adapted to build
such a feature.

Comprehensive Case Study Though we did evaluate our tool on some examples, see
Chapter 5, applying it to an extensive ABS model which realizes complex communi-
cation protocols could lead to additional insights. For example, it could be examined
to which degree the aforementioned restrictions on modeling hinder the implemen-
tation of the model. Also, it could be tested if the observations we recorded during
our performance evaluation still hold for such a large-scale model or whether new
effects of our schedulers on the execution performance of a model are discovered.

154

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Gul A Agha. Actors: A model of concurrent computation in distributed systems. Tech.
rep. MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1985.

Davide Ancona et al. “Behavioral Types in Programming Languages”. In: Foun-
dations and Trends in Programming Languages 3.2-3 (2016), pp. 95-230. por:
10.1561/2500000031. urL: https://doi.org/10.1561/2500000031.

Pedro Baltazar, Dimitris Mostrous, and Vasco Thudichum Vasconcelos. “Linearly
Refined Session Types”. In: Proceedings 2nd International Workshop on Linearity,
LINEARITY 2012, Tallinn, Estonia, 1 April 2012. 2012, pp. 38-49. po1: 10.4204/
EPTCS.101.4. urL: https://doi.org/16.4204/EPTCS.101.4.

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program Analy-
sis”. In: Computer Aided Verification, 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, Proceedings. 2007, pp. 504-518. po1: 10.1007/978-
3-540-73368-3_51. urL: https://doi.org/10.1007/978-3-540-
73368-3%5C_51.

Joakim Bjgrk et al. “User-defined schedulers for real-time concurrent objects”. In:
Innovations in Systems and Software Engineering 9.1 (Mar. 2013), pp. 29-43. 1ssN:
1614-5054. por: 10.1007/s11334-012-0184-5. urL: https://doi.org/
10.1007/s11334-012-0184-5.

Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. “A Complete Guide to the
Future”. In: Programming Languages and Systems, 16th European Symposium on
Programming, ESOP 2007, Held as Part of the Joint European Conferences on Theory
and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,
Proceedings. 2007, pp. 316-330. po1: 10.1007/978-3-540-71316-6_22.
URL: https://doi.org/10.1007/978-3-540-71316-6%5C_22.

155

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.4204/EPTCS.101.4
https://doi.org/10.4204/EPTCS.101.4
https://doi.org/10.4204/EPTCS.101.4
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3%5C_51
https://doi.org/10.1007/978-3-540-73368-3%5C_51
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1007/s11334-012-0184-5
https://doi.org/10.1007/978-3-540-71316-6_22
https://doi.org/10.1007/978-3-540-71316-6%5C_22

[7]

[8]

[9]

[10]

[11]

[14]

[15]

[16]

[18]

Frank S. de Boer et al. “A Survey of Active Object Languages”. In: ACM Comput.
Surv. 50.5 (2017), 76:1-76:39. por: 10.1145/3122848. urL: https://doi.
org/10.1145/3122848.

Benedikt Bollig et al. “A Fresh Approach to Learning Register Automata”. In: Inter-
national Conference on Developments in Language Theory. Ed. by Marie-Pierre Béal
and Olivier Carton. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 118-
130. 1sBN: 978-3-642-38771-5.

Joana Campos and Vasco T. Vasconcelos. “Channels as Objects in Concurrent Object-
Oriented Programming”. In: Proceedings Third Workshop on Programming Language
Approaches to Concurrency and communication-cEntric Software, PLACES 2010,
Paphos, Cyprus, 21st March 2010. 2010, pp. 12-28. por1: 10.4204/EPTCS.69.2.
URL: https://doi.org/10.4204/EPTCS.69.2.

Bo-Shoe Chen and Raymond T. Yeh. “Formal Specification and Verification of
Distributed Systems”. In: IEEE Trans. Software Eng. 9.6 (1983), pp. 710-722.
po1: 10.1109/TSE.1983.235434. urL: https://doi.org/10.1109/TSE.
1983.235434.

Dave Clarke et al. Full ABS Modeling Framework, Deliverable 1.2 of project FP7-
231620 (HATS). Mar. 2011. urL: https://www.hats-project.eu.

Crystal Chang Din, Richard Bubel, and Reiner Hdhnle. “KeY-ABS: A Deductive
Verification Tool for the Concurrent Modelling Language ABS”. In: Automated
Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings. 2015, pp. 517-526. po1: 10.1007/978-
3-319-21401-6_35. urL: https://doi.org/10.1007/978-3-319-
21401-6%5C_35.

Cormac Flanagan and Matthias Felleisen. “The Semantics of Future and an Appli-
cation”. In: J. Funct. Program. 9.1 (1999), pp. 1-31. urL: http://journals.
cambridge.org/action/displayAbstract?aid=44231.

Simon Fowler. “An Erlang Implementation of Multiparty Session Actors”. In: Pro-
ceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece,
8-9 June 2016. 2016, pp. 36-50. po1: 10.4204 /EPTCS.223.3. urL: https:
//doi.org/10.4204/EPTCS.223.3.

Juliana Franco and Vasco Thudichum Vasconcelos. “A Concurrent Programming
Language with Refined Session Types”. In: Software Engineering and Formal Methods
- SEFM 2013 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok, MoKMaSD,
and OpenCert, Madrid, Spain, September 23-24, 2013, Revised Selected Papers. 2013,

156

https://doi.org/10.1145/3122848
https://doi.org/10.1145/3122848
https://doi.org/10.1145/3122848
https://doi.org/10.4204/EPTCS.69.2
https://doi.org/10.4204/EPTCS.69.2
https://doi.org/10.1109/TSE.1983.235434
https://doi.org/10.1109/TSE.1983.235434
https://doi.org/10.1109/TSE.1983.235434
https://www.hats-project.eu
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6_35
https://doi.org/10.1007/978-3-319-21401-6%5C_35
https://doi.org/10.1007/978-3-319-21401-6%5C_35
http://journals.cambridge.org/action/displayAbstract?aid=44231
http://journals.cambridge.org/action/displayAbstract?aid=44231
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.4204/EPTCS.223.3

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

pp. 15-28. po1: 10.1007/978-3-319-05032-4_2. urL: https://doi.
org/10.1007/978-3-319-05032-4%5C_2.

Elena Giachino, Cosimo Laneve, and Michael Lienhardt. “A framework for deadlock
detection in corenABS”. In: Software & Systems Modeling 15.4 (Oct. 2016), pp. 1013-
1048. 1ssN: 1619-1374. po1: 10.1007/s10270-014-0444-y. UurL: https:
//doi.org/10.1007/s10270-014-0444-y.

Reiner Hahnle. “The Abstract Behavioral Specification Language: A Tutorial In-
troduction”. In: Formal Methods for Components and Objects - 11th International
Symposium, FMCO 2012, Bertinoro, Italy, September 24-28, 2012, Revised Lectures.
2012, pp. 1-37. po1: 10.1007/978-3-642-40615-7\ _1. urL: https:
//doi.org/10.1007/978-3-642-40615-7%5C_1.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty asynchronous
session types”. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008. 2008, pp. 273-284. po1: 10.1145/1328438.1328472.
URL: https://doi.org/10.1145/1328438.1328472.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. “Introduction to au-
tomata theory, languages, and computation, 3rd Edition”. In: Pearson international
edition. Section: Equivalence of Deterministic and Nondeterministic Finite Au-
tomata. Addison-Wesley, 2007. Chap. 2, pp. 60-62. 1sBN: 978-0-321-47617-3.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. “Introduction to automata
theory, languages, and computation, 3rd Edition”. In: Pearson international edition.
Section: Finite Automata With Epsilon-Transitions. Addison-Wesley, 2007. Chap. 2,
pp. 72-79. 1sBN: 978-0-321-47617-3.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. “Session-Based Distributed Pro-
gramming in Java”. In: ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings. 2008, pp. 516-541. por:
10.1007/978-3-540-70592-5_22. urL: https://doi.org/10.1007/
978-3-540-70592-5%5C_22.

Atsushi Igarashi et al. “Gradual Session Types”. In: CoRR abs/1809.05649 (2018).
arXiv: 1809.05649. urL: http://arxiv.org/abs/1809.05649.

Einar Broch Johnsen et al. “ABS: A Core Language for Abstract Behavioral Specifi-
cation”. In: Formal Methods for Components and Objects - 9th International Sympo-
sium, FMCO 2010, Graz, Austria, November 29 - December 1, 2010. Revised Papers.

157

https://doi.org/10.1007/978-3-319-05032-4_2
https://doi.org/10.1007/978-3-319-05032-4%5C_2
https://doi.org/10.1007/978-3-319-05032-4%5C_2
https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1007/s10270-014-0444-y
https://doi.org/10.1007/978-3-642-40615-7_1
https://doi.org/10.1007/978-3-642-40615-7%5C_1
https://doi.org/10.1007/978-3-642-40615-7%5C_1
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5%5C_22
https://doi.org/10.1007/978-3-540-70592-5%5C_22
https://arxiv.org/abs/1809.05649
http://arxiv.org/abs/1809.05649

[28]

[29]

[30]

[31]

[33]

[35]

[36]

[38]

[39]

2010, pp. 142-164. po1: 10.1007/978-3-642-25271-6_8. urL: https:
//doi.org/10.1007/978-3-642-25271-6%5C_8.

Eduard Kamburjan. Session types for ABS. Tech. rep. Technical report, 2016. URL:
http://tubiblio.ulb.tu-darmstadt.de/105068/.

Eduard Kamburjan and Tzu-Chun Chen. “Stateful Behavioral Types for Active
Objects”. In: Integrated Formal Methods - 14th International Conference, IFM 2018,
Maynooth, Ireland, September 5-7, 2018, Proceedings. 2018, pp. 214-235. po1: 10.
1007/978-3-319-98938-9_13. urL: https://doi.org/10.1007/978-
3-319-98938-9%5C_13.

Eduard Kamburjan, Crystal Chang Din, and Tzu-Chun Chen. “Session-Based Com-
positional Analysis for Actor-Based Languages Using Futures”. In: Formal Methods
and Software Engineering - 18th International Conference on Formal Engineering
Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings. 2016,
pp- 296-312. po1: 10.1007/978-3-319-47846-3_19. urL: https://doi.
org/10.1007/978-3-319-47846-3%5C_19.

Michael Kaminski and Nissim Francez. “Finite-Memory Automata”. In: Theoretical
Computer Science 134.2 (1994), pp. 329-363. por: 10.1016/0304-3975(94)
90242-9. urL: https://doi.org/10.1016/0304-3975(94)90242-9.

Wen Kokke. “Rusty Variation: Deadlock-free Sessions with Failure in Rust”. In:
Proceedings 12th Interaction and Concurrency Experience, ICE 2019, Copenhagen,
Denmark, 20-21 June 2019. 2019, pp. 48-60. po1: 10.4204 /EPTCS.304 .4. urL:
https://doi.org/10.4204/EPTCS.304 .4.

Vladimir I Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals”. In: Soviet physics doklady. Vol. 10. 8. 1966, pp. 707-710.

Sam Lindley and J Garrett Morris. “Lightweight functional session types”. In:
Behavioural Types: from Theory to Tools. River Publishers (2017), pp. 265-286.

Rumyana Neykova and Nobuko Yoshida. “Multiparty Session Actors”. In: Logical
Methods in Computer Science 13.1 (2017). por: 10.23638/LMCS-13(1:17)
2017. urL: https://doi.org/10.23638/LMCS-13(1:17)2017.

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. “Multiparty Session C: Safe Parallel
Programming with Message Optimisation”. In: Objects, Models, Components, Patterns
- 50th International Conference, TOOLS 2012, Prague, Czech Republic, May 29-31,
2012. Proceedings. 2012, pp. 202-218. poi1: 10.1007/978-3-642-30561 -
O_15. urL: https://doi.org/10.1007/978-3-642-30561-0%5C_15.

158

https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6%5C_8
https://doi.org/10.1007/978-3-642-25271-6%5C_8
http://tubiblio.ulb.tu-darmstadt.de/105068/
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-319-98938-9_13
https://doi.org/10.1007/978-3-319-98938-9%5C_13
https://doi.org/10.1007/978-3-319-98938-9%5C_13
https://doi.org/10.1007/978-3-319-47846-3_19
https://doi.org/10.1007/978-3-319-47846-3%5C_19
https://doi.org/10.1007/978-3-319-47846-3%5C_19
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0%5C_15

[45] Robert E. Strom and Shaula Yemini. “Typestate: A Programming Language Concept
for Enhancing Software Reliability”. In: IEEE Trans. Software Eng. 12.1 (1986),
pp. 157-171. po1: 10.1109/TSE.1986.6312929. urL: https://doi.org/
10.1109/TSE.1986.6312929.

[46] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. “An Interaction-based Language
and its Typing System”. In: PARLE ’94: Parallel Architectures and Languages Europe,
6th International PARLE Conference, Athens, Greece, July 4-8, 1994, Proceedings.
1994, pp. 398-413. po1: 10.1007 /3 -540-58184-7_118. urL: https:
//doi.org/10.1007/3-540-58184-7%5C_118.

[47] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

159

https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7%5C_118
https://doi.org/10.1007/3-540-58184-7%5C_118

Web Links

[12]

[13]

[17]

[26]

[32]

[34]

[37]

[40]

[41]

[42]

[43]

JUnit Contributors. JUnit 5 testing framework. Accessed: 2019-10-29. urL: https:
//junit.org/junit5/.

Linux kernel contributors. Perf Tools. https://perf .wiki.kernel.org/
index.php/Main_Page. Accessed: 2019-10-24.

Simon Fowler. Session Types in Programming Languages: A Collection of Implemen-
tations. Accessed: 2019-11-03. urL: http://groups.inf.ed.ac.uk/abcd/
session-implementations.html.

JetBrains s. . 0. and Kotlin Foundation. The Kotlin Programming Language. Accessed:
2019-10-29. urL: https://kotlinlang.org/.

David Keppel et al. GNU Time. https://www.gnu.org/software/time/.
Accessed: 2019-10-24.

Ericsson Computer Science Laboratory. The Erlang Programming Language. Ac-
cessed: 2019-11-07. urL: https://www.erlang.org/.

Commons I0 Members and Contributors. Commons IO utility library. Accessed:
2019-10-29. urL: https://commons.apache.org/io/.

Terence Parr and ANTLR Contributors. ANTLR parser generator. Accessed: 2019-10-
29. urL: https://www.antlr.org/.

Remko Popma and picocli Contributors. picocli - a mighty tiny command line interface.
Accessed: 2019-10-29. urL: https://github.com/remkop/picocli.

Armin Ronacher and Jinja contributors. Jinja2 template engine. https://jinja.
palletsprojects.com/en/2.10.x/. Accessed: 2019-08-20.

Rudolf Schlatte and abstools Contributors. Our modified branch of the abstools
compiler - GitHub source repository. Accessed: 2019-10-29. urL: https://github.
com/ahbnr/abstools/tree/thisDestiny.

160

https://junit.org/junit5/
https://junit.org/junit5/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://groups.inf.ed.ac.uk/abcd/session-implementations.html
http://groups.inf.ed.ac.uk/abcd/session-implementations.html
https://kotlinlang.org/
https://www.gnu.org/software/time/
https://www.erlang.org/
https://commons.apache.org/io/
https://www.antlr.org/
https://github.com/remkop/picocli
https://jinja.palletsprojects.com/en/2.10.x/
https://jinja.palletsprojects.com/en/2.10.x/
https://github.com/ahbnr/abstools/tree/thisDestiny
https://github.com/ahbnr/abstools/tree/thisDestiny

[44]

[48]

Rudolf Schlatte and abstools Contributors. The ABS modeling language and sur-
rounding tools - GitHub source repository. Accessed: 2019-10-01. urL: https:
//github.com/abstools/abstools.

Brett Wooldridge and NuProcess Contributors. NuProcess. Low-overhead, non-blocking
I/0, external Process implementation for Java. Accessed: 2019-10-29. URL: https:
//github.com/brettwooldridge/NuProcess.

161

https://github.com/abstools/abstools
https://github.com/abstools/abstools
https://github.com/brettwooldridge/NuProcess
https://github.com/brettwooldridge/NuProcess

A. Tool Usage Instructions

The source code of the SDS-tool and a compiled version are distributed with this thesis on
a compact disc which is attached to the last page. Moreover, the same source code can be
downloaded from GitHub, though these links might be inaccessible until this thesis has
been evaluated:

Our modified version of abstools https://github.com/ahbnr/abstools
(please use the branch “thisDestiny”)

SDS-tool https://github.com/ahbnr/SessionTypeABS

Prerequisites

Please make sure that the following dependencies are available on your system:

* Erlang version 22.1

* OpenJDK 11
If you want to build the tool from source, you also need to install the following dependen-
cies:

* Kotlin compiler, version 1.3.50.

* Git, version 2.24.0
Furthermore, it is assumed, that the commands in the following subsections are executed

on the bash shell of a linux system.

Instructions for building the SDS-tool can be found in the README . md file of the source
distribution.

162

https://github.com/ahbnr/abstools
https://github.com/ahbnr/SessionTypeABS

Usage

The following command

* statically verifies an ABS model against the given session types.
* applies our dynamic enforcement techniques to it.

* compiles the modified model to Erlang.

./ sdstool compile [flags] [.abs files] [.st files]

With the optional flags, verification or dynamic enforcement can be deactivated etc. Use
./ sdstool compile ——help for further information on them.

After compiling the ABS model, it can be executed like this:

gen/erl/run

Additional Commands

* ./sdstool printModel [.abs files] [.st files] prints the parts of the given ABS
model which are modified by our dynamic enforcement methods.

* ./sdstool printGlobalTypes [.st files] parses the given session type files and out-
puts them again.

* ./sdstool printLocalTypes [.st files] prints the object local session types pro-
jected from the given global ones.

163

B. Setup for Experiments

The experiments of Chapter 5 have been conducted on the following system configuration:

OS Arch Linux x86_64 (btw)

Kernel 5.3.7

CPU Intel i5-4300U (4) @ 2.900GHz
Memory 4 GiB

Execution time is measured using the perf-stat tool version 5.3.g4d856f72c10e [13] and
the maximum memory resident set size is measured using GNU Time version 1.9-2 [32].
Different instances of the ABS models are automatically generated using the template
engine Jinja2 [42]. The models can be executed and measurements be performed using a
set of Python scripts in folder prebuilt/evaluation on the data medium distributed
with this thesis. See the README .md / README . pdf file in the same folder for more
instructions on how to run them.

For instructions on how to use the SDS-tool in general, see Appendix A.

164

C. Plot Data

In this section we give the data used for rendering the plots of Section 5.4 in tabular
format.

repetitions plain enforcement repetitions relative increase
[s] [s] [%]
1 0.22 0.21 1 —6.37
2 0.2 0.2 2 —2.04
3 0.2 0.21 3 3.62
4 0.21 0.21 4 1.53
) 0.2 0.21) 7.24
10 0.2 0.21 10 5.63
30 0.22 0.23 30 5.92
50 0.22 0.22 50 0.59
70 0.23 0.25 70 6.66
80 0.25 0.26 80 6.56
100 0.24 0.28 100 14.7
300 0.34 0.59 300 73.41
500 0.44 1.02 500 132.51
700 0.51 1.45 700 184.65
900 0.58 2.06 900 252.58

Table C.1.: User-mode execution time. Left table displays absolute values, right one
relative increase in time when using Dynamic Enforcement.

165

repetitions plain enforcement repetitions relative increase
[kB] [kB] [%]
1 26,272 25,983.6 1 —1.1
2 26,074.8 26,291.6 2 0.83
3 25,896.4 26,210.8 3 1.21
4 25,934.8 26,262.8 4 1.26
5 26,318 26,289.2 5 —0.11
10 25,934.4 26,175.2 10 0.93
30 26,200 26,319.6 30 0.46
50 26,349.6 27,148.8 50 3.03
70 26,798.8 26,623.6 70 —0.65
80 26,724.8 27,092.4 80 1.38
100 27,280.4 27,311.6 100 0.11
300 29,475.6 30,913.6 300 4.88
500 31,906.8 35,2344 500 10.43
700 34,628 40,526.4 700 17.03
900 36,952 45,111.2 900 22.08

Table C.2.: Maximum memory set size. Left table displays absolute values, right one
relative increase in time when using Dynamic Enforcement.

166

repetitions plain sequential

plain alternating enforcement sequential enforcement alternating sequence length

[edits] [edits] [edits] [edits]
1 0 0 0 0 2
2 0 0 0 0 4
3 0.4 0.4 0 0 6
4 0.6 0.6 0 0 8
5 0.6 0.6 0 0 10
10 5.2 3.6 0 0 20
30 28.6 14.75 0 0 60
50 60.1 28.3 0 0 100
70 94.45 417 0 0 140
80 103.5 45.65 0 0 160
repetitions edits / sequence length

1 0

2 0

3 6.67 - 1072

4 7.5-1072

5 61072

10 0.18

30 0.25

50 0.28

70 0.3

80 0.29

Table C.3.: Levenshtein distance of observed and expected invocation sequence. Absolute
edits are displayed in the upper table. In the lower table, the number of edits
per sequence length is displayed when expecting a plain alternating sequence.

167

repetitions delays calls of scheduler

1 0 3
2 0 5

3 0 7

4 0 9

5 0 11
10 0 21
30 0 61
50 0 101
70 0 141
80 0 161
100 0 201
300 0 601
500 0 1,001
700 0 1,401
900 0 1,801

Table C.4.: Calls of the scheduler of Q. A “delay” is counted for every time the scheduler
is called and it can not select an activation.

168

repetitions plain enforcement repetitions relative increase
[s] [s] [%]
1 0.2 0.2 1 0.25
2 0.2 0.2 2 0.41
3 0.21 0.21 3 2.53
4 0.22 0.21 4 —4.65
) 0.21 0.21) —2.68
10 0.22 0.22 10 0.26
30 0.23 0.23 30 0.66
50 0.25 0.26 50 1.86
70 0.26 0.29 70 13.06
80 0.27 0.29 80 5.74
100 0.31 0.31 100 0.95
300 0.45 0.47 300 4.77
500 0.61 0.68 500 11.85
700 0.76 0.81 700 6.07
900 0.92 0.99 900 7.51

Table C.5.: User-mode execution time when using await statements. Left plot displays
absolute values, right one relative increase in time when using Dynamic En-
forcement.

169

repetitions delays

calls of scheduler

T W N

—_

0
30
50
70
80
100
300
500
700
900

U i W N

—_

0
30
50
70
80
100
300
500
700
900

4
7
10
13
16
31
91
151
211
241
301
901
1,501
2,101
2,701

repetitions plain enforcement
[s] [s]
1 0.2 0.2
2 0.2 0.2
3 0.2 0.24
4 0.24 0.28
5 0.21 0.21
10 0.26 0.28
30 0.25 0.24
50 0.27 0.27
70 0.28 0.3
80 0.31 0.32
100 0.33 0.35
300 0.74 0.71
500 1.17 1.25
700 1.91 1.9
900 2.65 2.72

Table C.6.: The left table shows the number of times (“delays”) no activation could be
selected by the scheduler of Q compared to the total number of calls. The right
table depicts measured user-mode execution times.

170

repetitions plain enforcement
[s] [s]
1 0.2 0.21
2 0.21 0.21
3 0.2 0.2
4 0.22 0.21
) 0.2 0.2
10 0.21 0.22
30 0.23 0.23
50 0.23 0.23
70 0.24 0.25
80 0.24 0.26
100 0.26 0.26
300 0.35 0.37
500 0.45 0.46
700 0.55 0.56
900 0.63 0.67
repetitions plain enforcement
[kB] [kB]
1 26,334.8 26,406.8
2 26,358.8 25,880
3 26,309.2 25,962
4 26,219.6 26,295.6
5 26,170.4 25,980.4
10 26,056.8 26,424.4
30 26,179.2 26,550.4
50 26,554 26,800.4
70 26,723.6 26,903.6
80 26,938 27,340.8
100 27,131.2 27,484.8
300 29,114.8 29,273.6
500 31,268.8 31,857.6
700 33,781.6 34,030
900 36,610.8 36,880.4

repetitions relative increase
[%]
1 3.72- 1072
2 —1.66-102
3 —2.79-1073
4 —-2.6-1073
5 —6.67-1074
10 6.06 - 102
30 —8.22-1073
50 1.31-1072
70 1.97 - 1072
80 6.78 - 1072
100 6.79-1073
300 6.38 - 1072
500 2.22.1072
700 1.96 - 1072
900 6.67 - 1072
repetitions relative increase
[%]
1 2.73.1073
2 —1.82-1072
3 —1.32-1072
4 2.9.1073
5 —7.26-1073
10 1.41-1072
30 1.42-1072
50 9.28 1073
70 6.74-1073
80 1.5-1072
100 1.3-1072
300 5.45-1073
500 1.88 1072
700 7.35-1073
900 7.36-1073

Table C.7.: In the upper row: User-mode execution time. In the lower row: Maximum
memory set size. The left tables display absolute values, the right ones the

relative increase in time/memory when using Dynamic Enforcement.

171

D. Algorithms

Algorithm 2 ¢-NFA to DFA algorithm based on the powerset construction.

1: procedure eNFATODFA(Q, qo, A, F)

2: qp = eCLOSURE(q)

3 Q= {7}

4: A=10

5: F:=0

6

7 Inspected := ()

8

9: while there is an g € Q with g ¢ Inspected do
10: A = GROUPEDTRANSITIONS()
11: QFQU{EZ | @pvﬁz) €A+}
12: A+~ AUAL
13:
14: Inspected < Inspected U {g}
15:

16: F={geQ|3qeqgqecF}

17: return (Q, gy, A, F)

18: function GROUPEDTRANSITIONS(q)

19: return {(q, v, Uy, v,4,)ca ECLOSURE(q2)) [¢1 € TN (q1,0,°) € ANv # e}

20: procedure eCLOSURE(q)

21: Closure .= ()

22: ToProcess == {q}

23:

24: while there is ¢; € ToProcess do

25: Closurey = ({q1} U{q2 | (q1,€,92) € A}) \ Closure
26: Closure <+ Closure U Closure.

27:

28: ToProcess < (ToProcess U Closure) \ {q1}

29:

30: return Closure

172

E. Examples

Example 8: AST Modifications for Enforcement of a Scheduling Policy
The following automaton A describes a scheduling policy for a class C, where

1. a method m1 can be invoked
2. a method m2 can be invoked

3. the computation of the first invocation can be reactivated

(InvocREv(m1),ro) (InvocREv(m2), (ReactEv(ml), o)

Class C is defined like this:

class C (DI d) implements CI {
Fut<Unit> f;

Unit m1() {
this.f = d!m();
await this.f?;

}

Unit m2() {
/...
}
}

Then this is the result of applying all necessary modifications to enforce the scheduling
policy described by A:

173

fun schedule(

List<Process> queue,

Int q,

Register r1, Register r2
) = forceInit(

() => case q {

@ => headOrNothing(
filter((Process p) =>
lcontains(set[r1, r2], Just(destinyOf(p)))
&& contains(set["m1"], method(p))
|| contains(set[], Just(destinyOf(p)))

) (queue)

1 => headOrNothing(
filter((Process p) =>
lcontains(set[r1, r2], Just(destinyOf(p)))
&& contains(set["m2"], method(p))
| | contains(set[], Just(destinyOf(p)))

) (queue)

)
2 => headOrNothing(

filter((Process p) =>
Icontains(set[r1, r2], Just(destinyOf(p)))
&& contains(set[], method(p))
| | contains(set[r1], Just(destinyOf(p)))
) (queue)

)
3 => headOrNothing(

filter((Process p) =>
lcontains(set[r1, r2], Just(destinyOf(p)))
&& contains(set[], method(p))
| | contains(set[], Just(destinyOf(p)))

) (queue)

}
) (queue) ;

174

[Scheduler: schedule(queue, q, r1, r2)
class C (DI d) implements CI {
Int q = 9;
Register r1
Register r2

Nothing;
Nothing;

Fut<Unit> f;

Unit m1() {
case this.q {
0 => {
this.r1 = destiny;
this.q = 1;
}

¥

this.f = d!m();

await this.f?;

if (this.q == 2 && this.r1 == Just(destiny)) {
this.q = 3;

}

=> assert False;

else { assert False; }

}

Unit m2() {
case this.q {
1 => {
this.r2 = destiny;
this.q = 2;

=> assert False;

175

F. Code Listings

Unit start(Int v){
Int invocState = this.q;

case this.q {
@ => { this.r@ = Just(destiny); this.q = 1; }

_ => { assert False; }

}

this.fCmp = this.b!cmp(this, v);
this.intern = Expect;

case invocState {

0 => {

assert (this.intern == Expect);
}
_ => skip;

Listing 11: Generated AST modifications of method start of the ABS model of Section 5.2.

176

0 —f— P:m.
(
P —fml—> Q:ml.
Q resolves fml.
P —fm2-—> Q:m2.
Q resolves fm2
).

P resolves f

Listing 12: Source code for the session type of the performance evaluation model of
Section 5.4.

177

G. Miscellaneous

G.1. Allowed Pure Expressions In Postconditions

The SDS-tool supports the following kinds of ABS pure expressions as defined in the
ANTLR grammar of the abstools compiler for the postconditions introduced in Section 3.7:

* FunctionExp * VarOrFieldExp
* ConstructorExp « FloatExp
¢ UnaryEx
YERP * IntExp
* MultExp
* StringE
* AddExp HIHEEXP
* GreaterExp * ThisExp
* EqualExp * DestinyExp
* AndExp * NullExp
* OrExp
e ParenExp

178

G.2. Used Libraries and Tools

Implementation Testing
e our modified variation of abstools ver- e JUnit 5 version 5.5.0 [12]
sion 1.8.1 [44, 43]

¢ ANTLR version 4.7 [40]

¢ NuProcess version 1.2.3 [48]

* picocli version 4.0.0-beta-2 [41]
* Apache Commons IO version 2.6 [37]

179

H. Index of Figures, Tables, Etc.

List of Figures

2.1. Layered architecture of ABS 15
2.2. Structure of an ABS model specification., 20
3.1. Dependencies between major conceptual steps and thesis goals. 39
3.2. Mechanics of the SDS-tool 40
3.3. Detailed overview of the architecture of the developed tool. 41
3.4. Grammar of Analyzed Global Session Types 45
3.5. executep function e 46
3.6. Transition function of analysisP. 48
3.7. Transition function of analysis F. 50
3.8. Transition function of analysis A. 54
3.9. Transition function of analysis R. 58
3.10.Transition function of the Combined Analysis C. 61
3.11.Merge operator of the Combined AnalysisC. 61
3.12.Self-Containedness check of the Combined Analysis C. 61
3.13.Scope closing operation of the Combined AnalysisC. 62
3.14.Grammar of Analyzed Object Local Session Types 64
3.15.0bject Local Projection i 65
3.16.Method Local Projectiono, . 72
3.17.Helper Functions used during Method Projection 73
3.18.Definition of future-equivalence for Method Local Types. 74
3.19.Verifiable ABS Kernel Language 77
3.20.Mapping from ABS interfaces to session typeroles 79
3.21.Rules of the type system for static verification (Part 1). 85
3.22.Axiomatic rules of the type system for static verification (Part2) 85
3.23.Rules of the type system for static verification (Part3) 86

180

3.24.Rules of the type system for static verification (Part4) 87
3.25.commlinertr.p.a predicate 88
3.26.Automaton Generation Cases Case 1, Case 2 and Case 6 102
3.27.Automaton Generation Cases Case4andCase3. 103
3.28.Automaton generation from branching types. 104
3.29.Concatenation function for Session Automata using e-transitions. 104
3.30.Half-open system as permitted by our static verification process. 118
4.1. Class hierarchy implementing global types. 128
4.2. Implementation of configurable session type analyses. 129
4.3. Type system rule interface and rule singletons. 130
4.4. Workflow of method body verification. 130
5.1. Grading System i e e e e e e e 132
5.2. Heap Communication Example 135
5.3. User-mode execution time. PhaseI 142
5.4. Maximum memory RSS.PhaseI 142
5.5. Levenshtein distance measurements. Phase I 143
5.6. Scheduling delays. PhaseI 144
5.7. User-mode execution time. Phase IT 146
5.8. Scheduling delays and user-mode execution times. Phase III 147
5.9. Notification service execution time and maximum memory RSS 148
List of Tables
C.1. User-mode execution time. PhaseI 165
C.2. Maximum memory RSS. PhaseI 166
C.3. Levenshtein distance measurements o v o v . .. 167
C.4. Scheduling delays. PhaseI 168
C.5. User-mode execution time. Phase IT 169
C.6. Scheduling delays and user-mode execution times. Phase III 170
C.7. Notification service execution time and maximum memory RSS. 171

List of Theorems

181

3.4.1Theorem (Method-Local Soundness of our Type System) 91
3.5.1Theorem (Global Soundness) 116
List of Algorithms
1. Main compiLE method of the SDS-tool (Compile.kt).. 126
2. &-NFA to DFA algorithm based on the powerset construction. 172
List of Examples
1. Example 1: Mail Notifications 31
2. Example 2: Mail Notifications (Part2) 35
3. Example 3: Mail Notifications — Method Projection 68
4. Example 4: Execution Order Violation 92
5. Example 5: Invocation Reordering Via Automata. 95
6. Example 6: Data Nondeterminism in Symbolically Deterministic Automata 105
7. Example 7: Safety Guarantees of Schedulers 119
8. Example 8: AST Modifications for Enforcement of a Scheduling Policy . . . 173

182

183

	Introduction
	Contribution of this Thesis
	Structure of the Thesis
	Notation

	Background
	Distributed Systems
	Active Objects
	Model of Concurrency
	Non-Determinism
	Dynamic Topology
	Fairness

	ABS language
	Layered Architecture
	Functional Layer
	Object Model and Imperative Language
	Concurrency Model
	Model Simulation

	Session Types
	Global Session Types
	Object Local Session Types
	Method Local Session Types

	Concept
	Tool Architecture
	Configurable Session Type Validation
	Formalization: Configurable Session Type Analysis
	Participants Analysis
	Future Freshness Analysis
	Actor Activity Analysis
	Resolution Analysis
	Combined Analysis

	Projection
	Object Local Projection
	Method Local Projection

	Static Verification
	Kernel Language
	Actor Representation in ABS
	Type System
	Additional Verification Steps
	Method-Local Soundness of our Type System

	Dynamic Enforcement
	Session Automata
	Automaton Generation
	Transformation into Symbolically Deterministic Automata
	Summary of Automaton Generation Steps
	ABS Compiler Modifications
	Automaton Integration
	Limits of Schedulers
	Global Soundness

	Liveness and Safety Considerations
	Postconditions
	Modified Session Type Syntax
	Changes to CST Validation, Projection and Automaton Generation
	AST Extensions

	Implementation
	Tools and Libraries
	Workflow
	Session Type Parser
	Configurable Session Type Validation
	Static Verification

	Evaluation
	Example 1: Ordered Activations
	Example 2: Heap Communication
	Example 3: Notification Service
	Performance Evaluation
	Phase I: Varying Repetitions
	Phase II: Await Statements
	Phase III: Delayed and Unordered Calls
	Performance of More Complex Models
	Summary

	Conclusion
	Related Work
	Future Work

	Bibliography
	Tool Usage Instructions
	Setup for Experiments
	Plot Data
	Algorithms
	Examples
	Code Listings
	Miscellaneous
	Allowed Pure Expressions In Postconditions
	Used Libraries and Tools

	Index of Figures, Tables, Etc.

