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Introduction

• We present ExoDPOR, a framework for exogenous stateless model checking

• Given a program and an initial state, it explores all non-equivalent executions

• ExoDPOR explores executions by invoking and controlling an external runtime
using executable traces

• We formalize requirements for the traces and relations that are communicated
between ExoDPOR and the external runtime

• ExoDPOR can be instantiated for programming languages or systems
supporting deterministic record and replay

• The search orchestrated by ExoDPOR can be parallelized in a straightforward
manner and scales over multiple machines

• We have instantiated ExoDPOR for Real-Time ABS
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Context

• Testing sequential programs is nice and reliable

• Low risk of false positives
• Testing concurrent programs is hard and unreliable

• High risk of false positives

• Testing all executions of a concurrent program would be ideal

• But is rarely feasible
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Related Work

• Stateless model checkers are tools for systematically exploring the execution paths
of a concurrent program

• Partial order reduction is crucial for avoiding many redundant executions
• Dynamic partial order reduction is a state-of-the-art algorithm for stateless model

checking

• Requires a runtime with backtracking
• DPOR algorithms are generally sequential and challenging to parallelize
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ExoDPOR for Real-Time ABS

• The main feature of ExoDPOR is that it is decoupled from the runtime

• ExoDPOR allows us to benefit from the Erlang backend of Real-Time ABS
• A change in the Erlang backend does not imply that a change is needed in the

ExoDPOR instantiation
• Much easier to support the full language
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LTS and Traces

• We assume a labeled transition system (LTS), (S, E ,→), where S is a set of
states, E a set of events, and →⊆ S × E × S the transition relation

• We allow unlabeled transitions
• An execution is a sequence of transitions

σ1
e1−→ σ2

e2−→ . . .
en−→ σn+1

such that all events are distinct and such that σn+1 is a final state
• We conventionally denote a final state by σε

• An execution trace is a sequence of events, denoted τ = e1 · e2 · · · en
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Record & Replay semantics

(Unlabeled Record & Replay)

σ → σ′

⟨τ• | τ▶⟩ ▷ σ
•/▶−→ ⟨τ• | τ▶⟩ ▷ σ′

(Labeled Record)

σ
e−→ σ′

⟨τ• | ε⟩ ▷ σ
•/▶−→ ⟨τ• · e | ε⟩ ▷ σ′

(Labeled Record & Replay)

σ
e−→ σ′

⟨τ• | e · τ▶⟩ ▷ σ
•/▶−→ ⟨τ• · e | τ▶⟩ ▷ σ′
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Relations over events

• We have the following relations over E :

ei
MHB
=⇒ ej if the event ei must happen before ej in all feasible executions;

ei ⋆ ej if the order of ei and ej may affect the result of an execution;
ei

HB
=⇒τ ej if ei occurs before ej in the trace τ and ei

MHB
=⇒ ej or ei ⋆ ej.

We can derive HB
=⇒τ from MHB

=⇒ and ⋆ for a given τ .
Two traces τ1 and τ2 are equivalent, denoted τ1 ≃ τ2, if HB

=⇒τ1=
HB
=⇒τ2 .
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Exogenous exploration

(Explore-single-trace)

⟨exo : {τ} ∪ Seeds, {w} ∪ W,Ss⟩ → ⟨exo : Seeds,W,Ss⟩ ⟨w : ⟨ε | τ⟩ ▷ σ0⟩

(Worker-progress)

⟨τ• | τ▶⟩ ▷ σ
•/▶−→ ⟨τ ′• | τ ′▶⟩ ▷ σ′

⟨w : ⟨τ• | τ▶⟩ ▷ σ⟩ → ⟨w : ⟨τ ′• | τ ′▶⟩ ▷ σ′⟩

(Update-with-explored-trace)

Ss′ = addTrace(Ss, τ) Seeds′ = Seeds ∪ newSeeds(Ss′, τ)
⟨exo : Seeds,W,Ss⟩ ⟨w : ⟨τ | ε⟩ ▷ σε⟩ → ⟨exo : Seeds′, {w} ∪ W,Ss′⟩
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Current state

• We have a sound implementation of Source-DPOR

• Major disadvantage with not being able to dynamically avoid redundant executions
• We are working on an implementation of Optimal-DPOR (still containing bugs)

• Every seed trace is guaranteed to reach a non-equivalent execution

• We have instantiations for two toy languages and for Real Time ABS
• Parallelization is simple and gives a linear speedup for long-running programs

20 21 22 23 24 25 26

workers

214

216

218

220

tim
e-

m
s

program
sleep 1000ms
sleep 100ms
sleep 10ms
sleep 0ms
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Conclusion

• We have introduced ExoDPOR, a general framework for stateless model
checking with state of the art DPOR-algorithms

• It has been instantiated for Real-Time ABS
• We believe an instantiation for ExoDPOR is significantly easier than to

implement a model checker from scratch
• Experiments indicate that parallelization gives a linear speed-up for long-running

programs
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