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= EXODPOR explores executions by invoking and controlling an external runtime
using executable traces

= We formalize requirements for the traces and relations that are communicated
between EXODPOR and the external runtime

= EXODPOR can be instantiated for programming languages or systems
supporting deterministic record and replay

= The search orchestrated by EXODPOR can be parallelized in a straightforward

manner and scales over multiple machines

= We have instantiated EXODPOR for Real-Time ABS
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= Testing sequential programs is nice and reliable
= Low risk of false positives
= Testing concurrent programs is hard and unreliable
= High risk of false positives
= Testing all executions of a concurrent program would be ideal

= But is rarely feasible
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Related Work

Stateless model checkers are tools for systematically exploring the execution paths
of a concurrent program
» Partial order reduction is crucial for avoiding many redundant executions

= Dynamic partial order reduction is a state-of-the-art algorithm for stateless model
checking

= Requires a runtime with backtracking

= DPOR algorithms are generally sequential and challenging to parallelize
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ExoDPOR for Real-Time ABS

= The main feature of EXODPOR is that it is decoupled from the runtime
ExXODPOR allows us to benefit from the Erlang backend of Real-Time ABS

= A change in the Erlang backend does not imply that a change is needed in the
ExoDPOR instantiation

= Much easier to support the full language
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= We assume a labeled transition system (LTS), (S,€&,—), where S is a set of
states, £ a set of events, and —C S x £ x S the transition relation

= We allow unlabeled transitions

= An execution is a sequence of transitions
e e e
o1 —1>02—>...—">0‘n+1

such that all events are distinct and such that o,41 is a final state
= We conventionally denote a final state by o,

= An execution trace is a sequence of events, denoted 7 = €1 - e --- €,



Record & Replay semantics

(UNLABELED RECORD & REPLAY)
o— o

<T.’T,>>O’i><7'.‘7’,>[>0',



Record & Replay semantics

(UNLABELED RECORD & REPLAY)
o— o

<T.]T,>>Ui><7'.\7’,>l>a’

(LABELED RECORD)
e
o —0

(re | &b 0 L5 (re €| )b o

/



Record & Replay semantics

(UNLABELED RECORD & REPLAY)
o— o

<T.]T,>>Ui><7'.\7’,>l>a’

(LABELED RECORD) (LABELED RECORD & REPLAY)
e e
o—a o— o
o/> / /

(re eV bo L (r-e| ) bo (ro|e-n)bo L (ra-e|B)ba



Relations over events

= We have the following relations over &:



Relations over events

= We have the following relations over &:

MHB . : . .
& — € if the event e; must happen before g; in all feasible executions;



Relations over events

= We have the following relations over &:

MHB . : . .
& — € if the event e; must happen before g; in all feasible executions;
e * € if the order of ¢; and e; may affect the result of an execution;



Relations over events

= We have the following relations over &:

MHB . : . .
& — € if the event e; must happen before g; in all feasible executions;
e * € if the order of ¢; and e; may affect the result of an execution;

HB . . MHB
& —>r € if e; occurs before e; in the trace 7 and ¢ = ¢; or ¢ x €;.

. HB MHB .
We can derive =, from = and * for a given 7.



Relations over events

= We have the following relations over &:

MHB . : . .
& — € if the event e; must happen before g; in all feasible executions;
e * € if the order of ¢; and e; may affect the result of an execution;

HB . . MHB
& —>r € if e; occurs before e; in the trace 7 and ¢ = ¢; or ¢ x €;.

. HB MHB .
We can derive =, from = and * for a given 7.



Relations over events

= We have the following relations over &:

MHB . : . .
& — € if the event e; must happen before g; in all feasible executions;

e * € if the order of ¢; and e; may affect the result of an execution;
HB . . MHB
& —>r € if e; occurs before e; in the trace 7 and ¢ = ¢; or ¢ x €;.
. HB MHB .
We can derive =, from = and * for a given 7.

. .. HB HB
Two traces 71 and 7 are equivalent, denoted 71 ~ 1, if =, = =—+,.
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Exogenous exploration

(EXPLORE-SINGLE-TRACE)

(exo: {1} U Seeds, {w} U W, Ss) — (exo: Seeds, W, Ss) (w: (¢ | T) > og)

(WORKER-PROGRESS)

(re | 7)o o 25 (7 | )b o

(w: (1o | y) > o) = (W: (10| T])>0”)

(UPDATE-WITH-EXPLORED-TRACE)

Ss' = addTrace(Ss,7) Seeds = SeedsU newSeeds(Ss', T)
(exo : Seeds, W, Ss) (w: (T | €) >0o.) — (exo: Seeds, {w} U W, Ss')
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Current state

= We have a sound implementation of Source-DPOR
= Major disadvantage with not being able to dynamically avoid redundant executions
= We are working on an implementation of Optimal-DPOR (still containing bugs)
= Every seed trace is guaranteed to reach a non-equivalent execution
= We have instantiations for two toy languages and for Real Time ABS

= Parallelization is simple and gives a linear speedup for long-running programs

. program
20 \ ~o— sleep 1000ms
. -4 sleep 100ms
\ m sleep 10ms
-m- sleep Oms
20 \
.
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Conclusion

= We have introduced EXODPOR, a general framework for stateless model
checking with state of the art DPOR-algorithms

= |t has been instantiated for Real-Time ABS

= We believe an instantiation for EXODPOR is significantly easier than to
implement a model checker from scratch

= Experiments indicate that parallelization gives a linear speed-up for long-running
programs
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