
Updates on Hybrid ABS

Eduard Kamburjan
University of Oslo

ABS Workshop’21, 26.08.21

Hybrid ABS

Hybrid Active Objects

Hybrid ABS (HABS) is a conservative extension of Timed ABS with
continuous dynamics for state changes during time advance.

This talk: recent results, on-going work and outlook, mainly verification.

Post-Regions

Generalizing method post-conditions to hybrid objects.
• Analyze local structure of object to derive how long continous

dynamics have to stay safe upon method termination (HSCC’211)
• Analyze global structure for more loosely coupled systems (on-going)

1https://www.youtube.com/watch?v=KTPs9B9jobo
Kamburjan — Updates on Hybrid ABS 1 / 14

Example: Water Tank

Sensor

Actuator

Controller

time in seconds

level
drain

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

class CSingleTank(Real inVal){
physical{

Real lvl = inVal : lvl’ = flow;
Real flow = -0.5 : flow’ = 0;

}
{ this!up(); this!low(); }
Unit low(){

await diff lvl <= 3 & flow <= 0;
flow = 0.5; this!low();

}
Unit up(){

await diff lvl >= 10 & flow >= 0;
flow = -0.5; this!up();

}
}

Is 3 ≤ lvl ≤ 10 an invariant (if 3 ≤ inVal ≤ 10)?
Kamburjan — Updates on Hybrid ABS 2 / 14

Differential Dynamic Logic

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::=∀x . ϕ | ϕ ∨ ϕ | ¬ϕ | . . . | [α]ϕ
α ::=?ϕ | v := t | v := ∗ | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and discard
all runs where it is above 5.[

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.

Kamburjan — Updates on Hybrid ABS 3 / 14

Differential Dynamic Logic

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::=∀x . ϕ | ϕ ∨ ϕ | ¬ϕ | . . . | [α]ϕ
α ::=?ϕ | v := t | v := ∗ | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and discard
all runs where it is above 5.[

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.

Kamburjan — Updates on Hybrid ABS 3 / 14

Internal Post-Regions

Setup

Preliminaries

• We assume that every method starts with an await diff statement.
If it does not, add await diff true.

• The leading guard of a method m is denoted trigm.
• Only Real variables are manipulated.
• Weak negation is denoted ¬̃e1 ≥ e2 ⇐⇒ e1 ≤ e2

Safety

An object is safe w.r.t. some formula ϕ, if its state is a model for ϕ

(a) whenever a method starts and (b) whenever time advances.

For this talk, all await are leading and no get or duration occur.

Kamburjan — Updates on Hybrid ABS 4 / 14

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly with
dynamic logic by showing that every method preserves I.

I →[s]I Proof Obligation for Java

This uses that the state does not change in inactive objects.

Kamburjan — Updates on Hybrid ABS 5 / 14

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly with
dynamic logic by showing that every method preserves I.

I →[s]I Proof Obligation for Java

This uses that the state does not change in inactive objects.

t

method
excutions

Kamburjan — Updates on Hybrid ABS 5 / 14

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly with
dynamic logic by showing that every method preserves I.

I →[s]I Proof Obligation for Java

This uses that the state does not change in inactive objects.

t

method
excutions

Kamburjan — Updates on Hybrid ABS 5 / 14

Basic Regions

Theorem
Let C be a class with dynamics ode. Each object of C is safe w.r.t. inv
and precondition pre if for every method the following holds:

inv →
[
?trigm; trans(sm)

](
inv ∧ [ode&true]inv

)
And additionally for the constructor:

pre →
[
trans(sinit)

](
inv ∧ [ode&true]inv

)

t t

Kamburjan — Updates on Hybrid ABS 6 / 14

Locally Controlled Regions

Theorem
Let C be a class with dynamics ode. For each method m let CMn be the
set of methods which are guaranteed to called in every execution. Each
object of C is safe w.r.t. inv if for every method m the following holds:

inv → [?trigm; trans(sm)]
(

inv ∧
[

ode&
∧

m′∈CMm

¬̃trigm′

]
inv
)

And analogously for the constructor.

t t

Kamburjan — Updates on Hybrid ABS 7 / 14

Structurally Controlled Regions

Definition
A controller is a method of the form

1 Unit m(){ await diff g; s; this!m(); }

which (a) is called from the constructor and (b) contains no
communication statements within s.

Theorem
Let C be a class with dynamics ode. Let Ctrl be the set of controllers and
CMn be as before. Each object of C is safe w.r.t. inv if for every method
m the following holds:

inv → [?trigm; trans(sm)]
(

inv ∧

[
ode&

∧
m′∈CMm∪Ctrl

¬̃trigm′

]
inv
)

And analogously for the constructor.

Kamburjan — Updates on Hybrid ABS 8 / 14

Structurally Controlled Regions

Definition
A controller is a method of the form

1 Unit m(){ await diff g; s; this!m(); }

which (a) is called from the constructor and (b) contains no
communication statements within s.

Theorem
Let C be a class with dynamics ode. Let Ctrl be the set of controllers and
CMn be as before. Each object of C is safe w.r.t. inv if for every method
m the following holds:

inv → [?trigm; trans(sm)]
(

inv ∧
[

ode&
∧

m′∈CMm∪Ctrl
¬̃trigm′

]
inv
)

And analogously for the constructor.

Kamburjan — Updates on Hybrid ABS 8 / 14

Structurally Controlled Regions

class StructureTank(){
physical{Real lvl = 5 : lvl’ = flow; ...}
{ this!up(); this!low(); }
Unit low(){await diff lvl <= 3 & ϕ1; flow = 0.5; this!low();}
Unit up(){await diff lvl >= 10 & ϕ2; flow = -0.5; this!up();}
}

inv → [?lvl <= 3 ∧ ϕ1; flow := 0.5](
inv ∧

[
lvl’ = flow&(lvl >= 3 ∨ ¬̃ϕ1) ∧ (lvl <= 10 ∨ ¬̃ϕ2)

]
inv
)

Modularity

• Changing a controller method requires to re-verify all methods.
• Changing a method requires reverification of its (guaranteed) callers.
• Otherwise, only the changed method must be reverified.

Kamburjan — Updates on Hybrid ABS 9 / 14

External Post-Regions

External Post-Regions

So far, locally and structurally controlled regions are computed internally.
Controller and controllee are tighly coupled within one object.

1 class Tank(Real inVal) implements Tank {
2 physical { ... }
3 /∗ timed_requires 1 ∗/
4 Unit check(){
5 if(level <= 3.5) drain = 0.5;
6 if(level >= 9.5) drain = -0.5;
7 }
8 }
9 class FlowCtrl(){

10 Unit ctrl(Tank t) {
11 await duration(1,1);
12 t!check();
13 this.ctrl(t);
14 }
15 }

Kamburjan — Updates on Hybrid ABS 10 / 14

External Control

Typing Control

Use behavioral types to keep track of
1. Which object is controlling an exposed method (∼ ownership)
2. Who often does this object call the method (∼ deadline)

Proof obligations do not change, but are justified differently.

Loose Coupling

This way, we can type check loose coupling:
1. Controller may change after some time
2. Multiple controllers can control one HAO

Kamburjan — Updates on Hybrid ABS 11 / 14

IoT systems in HABS

• The behavioral type system is for Timed ABS
• We can reuse all analyses for ABS for cloud based CPS
• This is exactly the structure of the IoT

IoT Node IoT Node

Gateway

IoT Node IoT Node

Gateway

Hybrid

Timed
Cloud

Kamburjan — Updates on Hybrid ABS 12 / 14

Conclusion

Modeling with Modelica

Modelica
Modelica is an OO language with differential equations as its semantics.
Describe equations for physical behavior by using physical as an interface.

model Growth "This is a modelica style comment"
output Real value; input Real lm;

equation
der(value) = 1/2*(lm-value);

end Growth;

class C {
physical Real v = 5;
physical{
Growth g(lm=lm, value=v); is(g.value, this.v); is(g.lm, this.l);

// der(v) = 1/2∗(l−v) //alternative
}

}

Kamburjan — Updates on Hybrid ABS 13 / 14

Conclusion

Summary

• Generalizing pre-/post-condition reasoning to hybrid systems
• Implemented for Hybrid ABS with KeYmaera X as backend
• On-going: verifying loosly coupled systems

Future Work

• Simulation and modeling with Modelica/FMUs
• Verification of global properties of HABS programs
• Resource-aware hybrid systems
• Verification of hybrid objects with rich data types

Thank you for your attention

Kamburjan — Updates on Hybrid ABS 14 / 14

Conclusion

Summary

• Generalizing pre-/post-condition reasoning to hybrid systems
• Implemented for Hybrid ABS with KeYmaera X as backend
• On-going: verifying loosly coupled systems

Future Work

• Simulation and modeling with Modelica/FMUs
• Verification of global properties of HABS programs
• Resource-aware hybrid systems
• Verification of hybrid objects with rich data types

Thank you for your attention
Kamburjan — Updates on Hybrid ABS 14 / 14

	Internal Post-Regions
	External Post-Regions
	Conclusion

